
 Technical Bulletin

 September 25, 1999 Page 1
© 1999 Liveware Publishing Inc.

Recursive Functions

Product: ARPEGGIO™
 R&R Report Writer® for
 Windows®
Version: All

Host: N.A.
NIC: N.A.
Interface: N.A.
Oper Sys: Microsoft® Windows® NT®

Summary
This technical bulletin explains a powerful technique called recursive functions. In computer
terminology, recursion occurs when a function calls itself. You may want to think of recursion as
a form of looping, which occurs when a program performs the same thing repeatedly while a
given condition is true.

Recursion and Looping
You may recall situations where you needed to perform a loop in a calculated field. Or, you
may have no idea what we mean by recursion and looping. We'll explain and demonstrate
recursion by presenting three user-defined functions (UDFs): substring replace, substring count,
and substring search.

User-defined functions are created by choosing User Function from the Calculations menu. See
the User-Defined Functions section of Using Functions chapter in the R&R User's Guide if you
need help with this command. Also, you need to be familiar with the $ operator and the
following functions: AT, LEN, MAX, SUBSTR, STUFF, and TRIM.

Substring Replace
We will create a function that allows you to replace all occurrences of a substring with another
substring.

For example, dBASE® allows you to insert semicolons within a character field at the point
where you want a new line to begin when the field is printed. R&R Report Writer supports this
feature, but some users want R&R Report Writer to ignore all semicolons in a given field. The
expression StrReplace(COMMENTS,";"," ") can be used to replace unwanted semicolons with
spaces in a field named COMMENTS.

 Technical Bulletin: Recursive Functions

 September 25, 1999 Page 2

Here are the definitions for the two parts of the substring replace function. As we explain below,
you need to break recursive functions into two parts.

Declaration: _ssReplace(c_string,c_old,c_new)

Formula: IIF(old$string, _ssReplace(
 STUFF(string, AT(old, string), LEN (old), new), old, new), string)

Declaration: StrReplace(c_string,c_old,c_new)

Formula: IIF(TRIM (old)$TRIM(string),
 _ssReplace(TRIM(string) ,TRIM(old), TRIM(new)), string)

The StrReplace() function requires three inputs: the string in which you are making the
replacements, which is denoted by the name string, the existing substring you want to replace,
denoted by the name old, and the replacement substring, denoted by the name new. The
formula is straight forward; here is what it says in English:

If the unwanted substring is contained within the string, replace all occurrences of the
unwanted substring with the replacement substring, otherwise, return the original string.

The _ssReplace() function is called by the StrReplace() function to make the substring
replacements. It repeatedly calls itself (loops) as long as there's still a copy of the unwanted
substring contained within the string. We take advantage of the built-in STUFF() function to
make the substring replacement.

Since the STUFF() function replaces a single occurrence of the unwanted string, each repetition
of _ssReplace() calls STUFF() to make the next replacement.

When there are no more copies of the unwanted substring to replace, _ssReplace() returns the
modified string. Here's what the formula says in English:

If the unwanted substring is contained within the string, replace the next occurrence of the
unwanted substring, otherwise, return the string.

Let's step through a simple example to get acquainted with recursion. Suppose you create a
calculated field expression StrReplace("aba","a","A"). Here's what happens when the expression
is evaluated:

1. StrReplace() tests whether the substring "a" is contatenated within the string "aba". This test
is performed with the expression TRIM(substring)$TRIM(string). Both the substring and the
string need to be trimmed so that trailing blank spaces are not included, otherwise you might
look for the substring "a " (the letter "a" followed by four spaces) within the string "aba"
and not find it.

2. Since the substring is contained within the string, the IIF() function evaluates the expression
_ssReplace(TRIM(string), TRIM(old), TRIM(new)). This expression calls the _ssReplace()
function with the trimmed string and two trimmed substrings.

 Technical Bulletin: Recursive Functions

 September 25, 1999 Page 3

3. The _ssReplace() function first tests whether the old substring is contained within the string,
to decide whether to continue looping or terminate. The first time _ssReplace() is called, the
substring "a" is contained within the string "aba". Since the condition is met, _ssReplace()
calls itself.

4. In the second call to _ssReplace(), the STUFF() function changes the first "a" within "aba" to
"A". During the second iteration of _ssReplace() the test is once again performed to
determine whether "a" is contained within the string, which is now "Aba". Since there's still
another "a" within "Aba", _ssReplace() calls itself again.

5. In the third call to _ssReplace() the STUFF() function changes the remaining "a" within
"Aba" to "A". During the third iteration of _ssReplace() the test is once again performed to
determine whether "a" is contained within the string, which is now "AbA". Since it's not,
_ssReplace() returns the completed string "AbA".

6. The third call to _ssReplace() terminates and returns the completed string to the second call
to _ssReplace(), which returns the completed string to the first call to _ssReplace(), which
returns the completed string to StrReplace(), which returns the completed string to the
calculated field. The calculated field expression StrReplace("aba","a","A") evaluates to the
value "AbA".

General Observations about Recursive Functions
From this description of how a typical recursive function works, we can make the following
general observations about recursive functions. We will apply these rules in the next two
examples, also.

1. Recursive functions are separated into two parts: a function you use in calculated field
expressions (let's call this the outer function), and another function used only by the outer
function to perform the recursive calculations (let's call this the internal function). In the
substring replace example, the StrReplace() function is the outer function and the
_ssReplace() function is the internal function.

2. The outer function handles such tasks is pre-processing the input values and error checking.
In the substring count example, input values are pre-processed by the TRIM() function, and
error checking is performed by the $ (contained within) operator.

3. The internal function, the one performing the recursion, almost always uses the IIF() function
to test whether to continue or stop the recursion. The CASE() function can sometimes be
used in place of IIF() in very complex formulas.

Substring Count
The purpose of this function is to count the number of times a substring appears within a string.
For example, you may have a ten character field that contains responses to ten Yes/No

 Technical Bulletin: Recursive Functions

 September 25, 1999 Page 4

questions. The contents may look like "YYNNYNNYNY". This function can be used to count
the number of Ys or Ns.

Here's the definition for the substring count function, which like the StrReplace() function, is
divided into two parts for the reasons described above:

Declaration: _ssCount (c_ss, c_string)

Formula: IIF(ss$string, 1+_ssCount (ss,
 SUBSTR(string, AT(ss,string)+LEN(ss))), 0)

Declaration: StrCnt(c_ss, c_string)

Formula: IlF(TRIM(ss)$TRlM(string),
 _ssCount(TRIM(ss), TRIM(string)), 0)

The StrCnt() function requires two inputs: the substring you are counting, which is denoted by
the name ss, and the string in which you are searching, which is denoted by the name string.
Here's what the formula says in English:

If the substring is contained within the string, return the number of occurrences of substring
within string, otherwise, return 0.

The _ssCount() function is used by the StrCnt() function to do the actual counting, if the
substring occurs within the string at least once. Otherwise there's no need to call _ssCount(), so
StrCnt() returns 0. Here's what the _ssCount() formula says in English:

If the substring is contained within the string, return 1 plus the number of occurrences of the
substring within the portion of the string after this occurrence, otherwise, return 0.

The _ssCount() function calls itself repeatedly until there are no more occurrences of the
substring within the string. Each call to _ssCount() passes an ever smaller portion of the original
string, throwing away the part up through the occurrence of the substring that was just counted.

Let's step through the mechanics of this function to make sure you understand it. For example,
suppose you create a calculated field expression StrCnt("a","aba"). Here's what happens when
the expression is evaluated:

1. StrCnt() tests whether the substring "a" is contained within the string "aba". This test is
performed with the expression TRIM(ss)$TRIM(string).

2. Since the substring is contained within the string, the IIF() function evaluates the expression
_ssCount(TRIM(ss), TRIM(string)). This expression calls the _ssCount() function with the
trimmed substring and string.

3. The _ssCount() function first tests whether the substring is contained within the string, to
decide whether to continue looping or terminate. The first time _ssCount() is called,
substring "a" is contained within the string "aba". Since the condition is met, the count is
incremented by 1 and _ssCount() calls itself.

 Technical Bulletin: Recursive Functions

 September 25, 1999 Page 5

4. In the second call to _ssCount(), the input string "aba" is shortened to "ba" since the first
occurrence of "a" was counted. This is done by the expression SUBSTR(string,
AT(ss,string) + LEN(ss)).

5. During the second iteration of _ssCount(), the substring "a" is contained within the string
"ba". The IIF() function adds 1 to the count and calls _ssCount() again with the input string
"ba" shortened to "" since the first two occurrences of the substring "a" were counted.

6. During the third iteration of _ssCount(), the substring "a" is not contained within the string "",
so the recursion stops. The IIF() function returns 0, which is added to the 1 from the second
call to _ssCount(), which is added to the 1 from the first call to _ssCount(), giving a total of
2, which is returned to the StrCnt() function. The StrCnt() function returns the value 2, since
there are two occurrences of "a" within "aba".

Substring Search
The AT() function provides the ability to search a string for a substring and return its position
within the string. The AT() function is limited to searching for the first occurrence of the
substring. We will create a function that can search for a specified occurrence such as the first,
second, etc. In addition, this function can search for the last occurrence, next-to-last
occurrence, etc.

For example, suppose you've used the LIBNAME() function to return the report library path
name, which might be a string such as "C:\RSW\REPORTS.RP6". To extract the library name
from the path name you can use the SUBSTR() function provided you know the position of the
last occurrence of the substring "\". To determine this position, use the StrSrch() function as
follows.

The StrSrch() function requires three inputs: the substring, the string, and the number of the
occurrence you wish to locate. To specify occurrences relative to the end of the string use
negative numbers, such as -1 to specify the last occurrence, -2 to specify the next-to-last
occurrence, etc. In the path name example, the expression

StrSrch("\",LIBNAME(),-1)

returns the position of the last backslash in the path name.

You can extract the library name from the path name by using the StrSrch() function in the
expression SUBSTR(LIBNAME(),StrSrch("\",LIBNAME(),-1) + 1). The resulting string is
"REPORTS.RP6". And in case you're wondering, the ".RP6" can also be removed from the
path name to return the string "REPORTS". Here's one expression you can use to remove the
path name and the file name extension:

 Technical Bulletin: Recursive Functions

 September 25, 1999 Page 6

LEFT(
 SUBSTR(LIBNAME() , StrSrch("\", LIBNAME(), -1) +1),
 AT(".", SUBSTR(LIBNAME(),STRSEARCH("\", LIBNAME(), -1)+1) -1)

Now that you've seen how the StrSrch() function can be used, we'll show you how it works.
Here's the function definition, again in two parts.

Declaration: _ssSearch(c_ss, c_string, n_num, n_ptr)

Formula: IIF(ss$(SUBSTR(string,ptr)) AND num>=1,
 _ssSearch(ss, string, num-1,
 AT(ss, SUBSTR(string,ptr)) + LEN(ss)+(ptr-1)), ptr - LEN(ss))

Declaration: Strsearch(c_ss, c_string, n_num)

Formula: IlF(TRIM(ss)$TRlM(string),
 _ssSearch(TRIM(ss), TRIM(string),
 IIF(num<0, StrCnt(ss,string) +num+1, num), 1), 0)

The StrSrch() function requires three inputs: the substring you are searching for, which is denoted
by the name ss, the string in which you are searching, denoted by the name string, and the
number of the occurrence of the substring you are searching for, denoted by the name num.
Here's what the formula says in English:

If the substring is contained within the string, return the starting position of the specified
occurrence of the substring within the string, otherwise, return 0.

Like the StrCnt() function, StrSrch() pre-processes the substring and string using the TRIM()
function. It also pre-processes the occurrence number to convert negative numbers to positive
numbers, and initializes a pointer to the first character in the string. The pre-processing of the
occurrence number and the initialization of the string pointer deserve a more detailed
explanation.

Occurrence number - Since you can't literally search for the -1st occurrence of a substring
within a string, you need to adjust this negative number to the actual occurrence number. If there
are two occurrences, using -l to specify the last occurrence actually refers to the second
occurrence. Likewise, using -2 to specify the next-to-last occurrence actually refers to the first
occurrence. The expression StrCnt(ss,string) + num +1 converts negative numbers to positive
numbers.

String pointer - The _ssSearch() function uses a slightly different technique for processing the
string than the _ssCount() function described above. The _ssCount() function chops off the
portion of the string it has already processed. In contrast, the _ssSearch() function keeps a
pointer to the position within the string up to which it has processed. The positioning method is
offered as an alternative because it's a bit more complex, but operates faster.

The pointer is initialized by StrSrch() to 1, to point to the first character within the string, and is
denoted by the name ptr. Here's what the _ssSearch() function says in English:

 Technical Bulletin: Recursive Functions

 September 25, 1999 Page 7

If the substring is contained within the part of the string starting at the pointer, and there are
more occurrences of the substring to search for, decrease the number of remaining
occurrences to search for, move the pointer beyond the current occurrence, and search for
the next occurrence, otherwise, return the position of the substring within the string.

This algorithm is a bit more complex than the ones we've worked with so far, so let's step
through an example using the expression StrSrch("\",LIBNAME(), -1) where LIBNAME()
evaluates to the string "C:\RSW\REPORTS.RP6".

1. StrSrch() tests whether the substring "\" is contained within the string
"C:\RSW\REPORTS.RP6" with the expression TRIM(ss)$TRIM(string).

2. Since the substring is contained within the string, the IIF() function evaluates the expression
that calls _ssSearch() with the trimmed substring and string, and the adjusted occurrence
number, which in this case is 2. The occurrence number -1 denotes the "last" occurrence of
"\", which is adjusted to 2 since the StrCnt() function finds two occurrences of "\".

3. The _ssSearch() first tests whether the substring is contained within the string and whether
there are more occurrences to search for, to decide whether to continue looping or to
terminate. The first time _ssSearch() is called, the string "C:\RSW\REPORTS.RP6" does
contain the substring "\" and there are still two occurrences of "\" to search for. Since the
conditions for recursion are met, _ssSearch() calls itself.

4. In the second call to _ssSearch(), the occurrence number is decremented from 2 to 1 since
an occurrence of the substring "\" has been found. Also, the pointer to the string
"C:\RSW\REPORTS.RP6" is incremented from 1 to 4, so the remaining portion of the string
to search is "RSW\REPORTS.RP6".

During the second iteration of _ssSearch(), the substring "\" is contained within the string
"RSW\REPORTS.RP6" and there is still one occurrence of "\"to search for. Since the
conditions for recursion are met, _ssSearch() calls itself again.

5. In the third call to _ssSearch(), the occurrence number is decremented from 1 to 0 since
another occurrence of the substring "\" has been found. Also, the pointer to the string
"C:\RSW\REPORTS.RP6" is incremented from 4 to 7, so the remaining portion of the string
to search is "REPORTS.RP6".

During the third iteration of _ssSearch(), the substring "\" is not contained within the string
"RSW\REPORTS.RP6", and even if it were, there are no more occurrences of "\" to search
for. Since the conditions for recursion are not met, _ssSearch() decrements the pointer from
7 to 6 to point to the second occurrence of the substring "\" with the expression ptr -
LEN(ss).

6. The recursion unwinds as the third call to _ssSearch() returns to the second call, which
returns to the first call, which returns to the outer function, Strsearch(), which returns the

 Technical Bulletin: Recursive Functions

 September 25, 1999 Page 8

value 6. The second occurrence of the substring "\"within the string
"C:\RSW\REPORTS.RP6" is located at character position 6.

Conclusions
The three substring functions presented in this article were designed to have a balance of clarity,
speed, and usefulness. You may wish to tailor these formulas to your specific needs. For
example, you may wish to sacrifice usefulness for speed in the substring search function if you
only ever need to search for the last (rightmost) occurrence of a substring within a string.

Instead of using the StrSrch() function, you could develop a dedicated function that is less
general but faster. The following Rat() function is analogous to the AT() function, but returns the
position of the rightmost occurrence of the substring within the string.

Declaration: _rat(c_ss, c_string, n_ptr)

Formula: IIF(ss$(SUBSTR (string, ptr)),
 _rat (ss, string,
 AT(ss, SUBSTR(string, ptr))+LEN(ss)+(ptr-1)), ptr-LEN(ss))

Declaration: Rat(c_ss, c_string)

Formula: MAX(_rat(TRIM(ss), TRIM(string), 1), 0)

All trademarks are the property of their respective owners. The information contained in this technical
bulletin is subject to change without notice. Liveware Publishing Inc. provides this information “as is”
without warranty of any kind, either expressed or implied, but not limited to the implied warranty of
merchantability and fitness for a particular purpose. Liveware Publishing may improve or change the
product at any time without further notice; this document does not represent a commitment on the
part of Liveware Publishing. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of the licensing agreement.

