
 Technical Bulletin

 September 25, 1999 Page 1
© 1999 Liveware Publishing Inc.

Using the PREVIOUS Function to
Suppress Repeats

Product: ARPEGGIO™
 R&R Report Writer® for
 Windows®
Version: All

Host: N.A.
NIC: N.A.
Interface: N.A.
Oper Sys: Microsoft® Windows® NT®

Summary
This technical bulletin presents an example of using the PREVIOUS() function to suppress
repeating data in fields.

When to Use the PREVIOUS Function
The report excerpted in Figure 1 shows airline ticket information for a list of passengers. The
report uses a master ticket table to look up records in a related passenger table and a related
routings table.

Passenger Ticket No Fare Routing
Allen, Joan 014-37898 216.00 YYZ - YUL
 YUL - YYZ
 014-37899 384.00 YYZ - YYC
 YYC - YYZ
Arseneault, H 014-37910 446.00 YYC - YOW
 YOW - YYC
Bannen, Colin 014-37955 201.50 YVR - YYC

 Page 2

Passenger Ticket No Fare Routing
Bannen, Colin 014-37955 201.50 YYC - YVR
Cohen, Jill 014-37999 216.00 YYZ - YUL
 YUL - YYZ

Figure l. Sample Report with Repeating Data

As you can see, the report is grouped by passenger name, ticket number, and fare. Marking the
"Print Once" setting for all group fields will keep data from printing more than once for each
group, unless the records for a group are split across the page, as they are for passenger

 Technical Bulletin: Using the PREVIOUS Function to Suppress Repeats

 September 25, 1999 Page 2

Bannen. In this case, R&R Report Writer reprints the data in all the group fields at the top of the
second page.

While this repeated data usually clarifies a report by making it easier to follow groups from page
to page, in some cases the repeated fare data makes it look as if passenger Bannen purchased
two tickets. You have to look at the ticket number carefully to see that this is a single group that
has two records, one for routing YVR-YYC and one for routing YYC-YVR.

How can you suppress the repeating fare data even when a group continues on another page?
The solution is to use the PREVlOUS() and IIF() functions as described in the following
paragraphs to suppress repeating data. The PREVIOUS() function returns the previous value
placed in a field, while the IIF() function can be used to test whether this PREVIOUS value is
the same as the field's current value. If the values are the same, the IIF function returns an empty
string (effectively suppressing printing of a duplicate value). If the values are different, IIF returns
the field's current value. Note that this technique can be used to suppress data even in fields that
are not group fields.

How the PREVlOUS() Function Works
In order to use the PREVIOUS() function properly, you must understand exactly how the
function works. In the Xbase version of R&R Report Writer, PREVIOUS() returns the value of
the specified field when it was last evaluated by R&R Report Writer — that is, when R&R
Report Writer last placed a value in the field by reading the table containing the field and/or
performing an R&R Report Writer calculation.

R&R Report Writer evaluates every table, calculated, and simple total field for each composite
record. That is, R&R Report Writer reads the table(s) and places values in these fields each
time it builds a composite record. In this case, the PREVIOUS value of any of these fields will
be the field's value in the previous composite record.

For example, take a report that uses a master orders table to look up a customer address in a
related customer table. Each time R&R REPORT WRITER reads an orders record, it must
also read a customer record to find an address for the order. This means that fields from both
files are evaluated each time a composite record is built. As a result, the PREVIOUS value of
any field in the report will be the value of the field in the previous composite record.

NOTE: Fields that total other fields are evaluated only when the field being totaled resets.
These fields are therefore an exception to the general rule stated here. Their PREVIOUS
value will not always be the value as of the previous composite record.

 Technical Bulletin: Using the PREVIOUS Function to Suppress Repeats

 September 25, 1999 Page 3

Using PREVIOUS() to Suppress Fare Data
Given the way the PREVIOUS function works, the first step in using this function to suppress
repeating fare data is to determine how often the FARE field is evaluated. The FARE value
does not change for each record, but for each ticket. As a result, the value of
PREVIOUS(FARE) will be the fare for the previous ticket, rather than the previous composite
record.

In order to suppress any repetition of the fare value within a single ticket group, we must create
a calculated field that says, in effect, if the ticket number for this composite record is the same as
the ticket number for the previous composite record, don't print the fare value for the ticket
(since it will have already been printed). But if the ticket number for this composite record is
different from the ticket number for the previous composite record, print the fare value.

Before we can create this calculated field, we must first create an intermediate calculated field
on which the PREVIOUS function can operate. This field will contain the same value as the
ticket number field, but it will be evaluated for each composite record rather than for each
group.

We can create a calculated ticket number field evaluated for every record by using
TICKETNO as an argument to a function that causes R&R Report Writer to perform a
calculation for each composite record. For example, the RECNO() function used without a file
name argument causes R&R Report Writer to return the current composite record number. Any
field using this function must therefore be evaluated for each composite record.

Let's create a calculated field called PERCOMP with the expression given below. This field will
return the same value as that contained in the TICKETNO field, but the calculated field will be
evaluated for each composite record rather than for each ticket group:

IIF(RECNO(), TICKETNO, TICKETNO)

Translated, this expression says that if the current composite record number is not equal to zero,
return the value of TICKETNO. Otherwise, return the value of TICKETNO. The trick to the
expression is that it will simply return the value of the TICKETNO field for each composite
record, no matter what the value of RECNO.

After creating the PERCOMP field, you can create a second calculated field with the following
expression:

IIF (PERCOMP <>PREVIOUS (PERCOMP), STR (FARE),"")

Using the PREV and IIF functions, this field tests to see if the ticket number value (i.e. the
PERCOMP value) in the current composite record is the same as that in the previous composite
record. If so, the expression returns an empty string. If not, the expression returns the FARE
value from the current composite record. Note that the STR function has been used in this

 Technical Bulletin: Using the PREVIOUS Function to Suppress Repeats

 September 25, 1999 Page 4

expression because the two result arguments of an IIF expression must have the same data
type. For date fields, you could use the DTOC function in the same way; that is,

IIF (PERCOMP <> PREVIOUS (PERCOMP), DTOC (<date field>),"")

When this calculated field replaces the FARE field on the report layout, the fare value will print
once (and once only) for each ticket group, even without making the calculated field a group
field.

You could use the same strategy to suppress the repeated printing of the passenger name and/or
ticket number.

All trademarks are the property of their respective owners. The information contained in this technical
bulletin is subject to change without notice. Liveware Publishing Inc. provides this information “as is”
without warranty of any kind, either expressed or implied, but not limited to the implied warranty of
merchantability and fitness for a particular purpose. Liveware Publishing may improve or change the
product at any time without further notice; this document does not represent a commitment on the
part of Liveware Publishing. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of the licensing agreement.

