
“Desktop Data Warehousing”

An alternative approach to traditional data warehousing projects
that leverages R&R Report Writer on a desktop PC.

A White Paper From Liveware Publishing

By Daniel Levin

© Copyright August 2001

Page 2 Desktop Data Warehousing

© Liveware Publishing, August 2001

Overview

In the past several years, there has been a trend in databases toward
accumulating data into a “Data Warehouse”. Usually this process involves moving
and processing large volumes of data onto a large-scale platform such as Oracle
or SQL Server, and storing that information on very large servers with huge
amounts of storage and retrieval capacity.

An industry has evolved around this methodology, and several large technology
companies have embraced it as a high-value application of their equipment and
software. Companies that build the equipment for this purpose and software
companies that manipulate the data that results from the effort have grown
tremendously. These companies promise unlimited value to the enterprise under
the heading “Business Intelligence”. They propose large value from “data-mining”,
on-line analytical processing (OLAP), and “data-mart” one-stop shopping for
information, and also promise complete data security.

The core purpose of any data warehousing effort is clear: allow people in the
enterprise to put their data to use in marketing, sales, operations, planning, decision
support, customer service, management control and so on. This is always the
primary function of any information system, not just the data warehouse. While
there is little doubt that some value comes from data warehousing efforts, the
current approach advanced by technology companies, and supported by many
enterprises’ Information Technology departments, is not the only methodology
to fulfill these objectives. In fact, the current methodology for data warehousing
is often the most expensive and difficult one!!

At Liveware Publishing, we have been pursuing a different concept that we
have found works better and costs much less. Our methodology should have
significant appeal to any enterprise that falls into these categories:

Desktop Data Warehousing Page 3

© Liveware Publishing, August 2001

- Organizations that are too small to provide the resources that the
complex systems, software and support a traditional data warehousing
project demands, but still wants the benefits such an effort promises.

- Organizations whose data and operations are too diverse or
decentralized to make a traditional data warehouse effort feasible.

- Organizations under time constraints that make the lengthy data
warehouse development process unappealing.

- Organizations concerned about the initial and ongoing costs of a
traditional data warehousing effort.

- Organizations that have already invested in a traditional data
warehousing effort, but find it still has gaps due to a changing business
environment, acquisition of new business units or critical data sources
that are not easily integrated with the existing data warehouse.

In short, nearly every organization can utilize our methodology, but with little
additional investment in either information technology or software, and with far
less development (and hence a much shorter deployment interval) than a traditional
data warehouse.

We realize that our proposition runs counter the trends in this industry and, in
particular, the thinking in many IT departments. Nevertheless, we are prepared
to defend our position in theory and by example; we can deliver the required
results to operating department in far less time, far less money, and with far
greater flexibility than traditional data warehousing.

Nature of the Data Problem

The fundamental purpose of a data warehouse project is to prepare raw
data for distribution to operational departments that generate and then utilize that
information. By its very nature, the data in a data warehouse is for ‘reporting’,
which we will broadly define as any form of extraction. The data tables in the
warehouse are not for dynamic additions, transaction processing, editing or
spontaneous reference; such functions are reserved for production databases
tied to specific application software.

To build a traditional data warehouse, one or more copies of the production
databases are made to a central location or locations, often with a variety of
processes performed on the data tables. These processes include one of more
the following:

- Standardization of all data tables on a single platform, to allow for
single-tool manipulation of the data into its final form.

Page 4 Desktop Data Warehousing

© Liveware Publishing, August 2001

- Translation of specific data fields to a common coding basis – such
as identification of all ‘people’ by their social security numbers, instead
of a variety of coding schemes.

- Consolidation of several identically or similarly structured data tables
into a single table containing the common information.

- Recasting raw data into normalized or de-normalized data tables,
based on the context of how that raw data is likely to be used.

- Accumulation of raw data into time or group related totals – such as
adding sales totals by region or year from individual sales transactions.

- Creation of metadata units and/or result sets by joining data tables
based on their common values or contextual relationships.

Figure 1 presents a schematic of a traditional data warehouse under this
generalized function, including icons that represent end-users of the information.

Naturally, these complex processes require a significant amount of effort to
design and implement. In general, a traditional data warehouse will take several
months to design and even longer to implement due to one overriding problem:
contextual uses of the raw data.

Figure 1 -- Schematic of ‘traditional’ data warehousing effort.

Desktop Data Warehousing Page 5

© Liveware Publishing, August 2001

Collecting and Storing Data vs. Using It

Collecting data is relatively easy and getting progressively easier. Passive
measurement and data collection systems – including sensors, digital cameras
and, especially, bar-code scanners and similar devices – can build huge volumes
of accurately coded data. Computer entry and database sharing make building
large databases a much less onerous task than in any time in history.

Similarly, electronic devices for quickly recording, storing and retrieving this
raw data have also improved exponentially, and are likely to continue to do so
for some time. Microprocessor speeds continue to double every couple of years
and storage devices can read and write the data bits in ever-larger quantities.
Networks to transfer these bits from one location to another have also improved
in speed and ‘bandwidth’ – the ability to send a certain amount of data
electronically from point A to point B in a unit of time – is expanding so quickly
that its overabundance is universally believed to be just a matter of time.

What has not changed very rapidly, if one argues it has changed at all, is the
purposes – or ‘contexts’ – in which that data is used. The core functions of any
organization that relies on its information – accounting, sales & marketing, customer
service, production (and/or delivery of services), resource management (including
inventory, personnel administration, distribution) – have not changed nor are they
likely ever to change. In addition, the manner with which these functions are
performed, in relation to the information available, are not very much different
than in the pre-computer age.

With the advent of computerized information, management can access data
in greater detail and analyze that raw data to replace gut instinct in management
decision-making. Experience and wisdom still rule, however, often trumping the
analysis of the data. Since management is often about anticipating the future, the
collection and analysis of raw data, which only reflects the past, must only aid in
decision-making, not replace it. Similarly, information can be communicated to
others using modern technology, but decisions regarding who, what, where, when
and why still require management input. The same issues are involved in the use
of information for routine and special administrative tasks – auditing, follow-up,
etc. – need intelligent human control.

Traditional data warehousing projects have attempted to address the end-
users needs as diagrammed in Figure 2 (page 6). This effort usually starts with in-
depth interviews with the end-users to identify the types of information they need
to extract from transactional systems, and the timing and form in which the data
must be delivered. Then the information technology (IT) department, often in
concert with consultants in data warehousing, proceeds to develop all of
procedures, result sets and, often, the final output form for delivery to the end-
user of that information.

Page 6 Desktop Data Warehousing

© Liveware Publishing, August 2001

This has become a popular methodology, but the turn-around time involved,
and the amount of knowledge transfer from personnel in operational departments
to those in IT needed to produce viable results is extensive – and expensive.
Often, it takes consulting firms knowledgeable in both IT and operational
requirements to produce initial results. It then becomes necessary to maintain the
consultants or add IT staff to develop new or modified final results as circumstances
change.

Limitations of a Traditional Data Warehouse

There is no way to escape the need for the people who use the information
to have some modicum of control over how the information is organized. As their
circumstances change, even slightly, the methods with which they will need to
extract data from transactional applications programs will change. In addition, in
nearly all cases the people have unique knowledge of their circumstances. That
knowledge may be either stored in a local data source, such as a spreadsheet or
PC/network-based database, or simply within their own minds. Traditional data
warehousing projects cannot address any of these elements, or require such a
high level of maintenance rendering the entire effort moot or prohibitively expensive.

As stated above and diagrammed in Figure 2, the knowledge transfer for the
operational functions can be achieved, but only with the ongoing intervention of

Figure 2 -- IT Consultants’ involvement and information transfer in a traditional data ware-
housing effort.

Desktop Data Warehousing Page 7

© Liveware Publishing, August 2001

IT departments, and/or hired consultants. The most common rationale for this
method is that people in operational departments do not understand the database
schema nor the tools with which to manipulate the data into its final form. (We
will put aside, temporarily, our objection to that premise.) Yet, those building the
procedures, result sets, interim and final output in the data warehouse project
cannot always know, nor anticipate, what is in the mind of the person in the
operational department.

Expertise, managerial “gut instincts” and other elements of data analysis and
routine uses are hard to describe to an IT person or consultant who hasn’t faced
the same challenges day after day. Even if a data warehousing project could do
so, the availability of the consultants or IT staff to address, prioritize and complete
the myriad requests from end-users in operational departments in daunting.

Perhaps an even greater challenge to traditional data warehousing is its inability
to address local data sources. By their nature, data warehouses can only
summarize and relay the information that is in them. But suppose – and this is a
very common situation – that the end-users have some combination of the
following:

- A spreadsheet that contains special information, such as analysis
factors, for which there is no corollary in any table in the data
warehouse.

- Data transmitted from a third party in raw form (e.g., phone records
from the long-distance service provider).

- A departmental database or “best of breed” application running within
the LAN or even local PC environment.

- End-user specific databases, either built by the end-user or legacy
applications designed to address mission-critical (or hard-to-replace)
functionality.

Adding any of these data sources to the data warehouse, just to incorporate
them in the final result, is highly problematic and costly to the point of impossibility
– in a traditional data warehouse.

Rationale for a Desktop Data Warehouse

Our thesis is this: since it is the end-user – most often a person in an operational
department, not in IT – who:

a) needs the information to perform their tasks,
b) understands those tasks,
c) understands the actual data (as opposed to, perhaps, the data
structures or schema), and

Note: We believe that the ‘Desktop
Data Warehousing’ is analagous to
desktop publishing, where pre-press
work was moved substantially from the
professional graphic artist realm to the
typical end-user who has better than
average computer knowledge. Some
understanding of fonts, graphics, page
layout fundamentals and so forth was
a prerequisite, but end-users
embraced it due to greater control and
quicker turnaround for their complex
documents.

Page 8 Desktop Data Warehousing

© Liveware Publishing, August 2001

d) has a local computer readily available

then it is at the end-user’s computer – the desktop – at which one should construct
the data warehouse.

In order to do what we propose, our approach need not address all of
functions of a traditional data warehousing project, as outlined in the section
entitled “Nature of the Data Problem” – but it would be nice!! Nor does our
approach eliminate the need for IT departments and consultants to participate in
the process. It simply reduces the amount of knowledge transfer necessary to
produce final results, and makes some of that knowledge flow from IT
departments and consultants to the end-users. This is a crucial difference, as
end-users set priorities and the timing for completion of final results, not IT
departments. In addition to end-users explaining their needs to IT and consultants,
these consultants prepare components for end-user to manipulate, and explain
database schemas and the method for using the tools.

Now we challenge the premise that end-users in operational departments
don’t (or can’t) understand database schemas and data management tools. For
the first item – database schemas – the end-user doesn’t have to know all of it,
just those portions most applicable to their needs. IT and consultants can also
develop metadata, templates, samples and other short-cuts to assist the end-
user; this is a far better and cheaper method than training IT and consultants to
do everybody’s job. For the second item – end-users not understanding the
tools – we patently disagree. Well-designed tools – such as R&R Data Warehouse
– are no more complex to use and understand than a spreadsheet program.

Training, practice, and mentoring from IT and consultants are necessary, but
with the added benefit that the end-users also learn more about data management.
They also begin to appreciate that data quality is paramount; they can’t use what
wasn’t input – and input correctly. The importance of coding, consistent entry,
timely updates and auditing procedures all carry extra weight when the end-user
sees the data coming together in the final results.

Creating a Desktop Data Warehouse with “R&R Data Warehouse”

Our “Desktop Data Warehouse” is diagrammed in Figure 3 (page 9). Note
that local data sources are treated just like every other. Our diagram also makes
full use of any existing data warehouse – this is just more raw material for desktop
manipulation. (This is also why a Desktop Data Warehouse might not need to
address every item outlined above.)

When we gained control of R&R Report Writer in 1999, our target was to
produce a desktop data warehouse software program that mimics all of the
functionality of a traditional data warehouse. With R&R V9.0, we have succeeded
in our goal. In the sections that follow, we will demonstrate how R&R can perform
these core functions.

Note: Our experience is that end-users
will ultimately define the success or
failure of the data warehousing project,
and many of those projects do fail.

Desktop Data Warehousing Page 9

© Liveware Publishing, August 2001

Standardization of Data to a Single Platform

For the first of our data warehousing core functions – platform standardization
– we do so using DBF data files stored in a location from which the desktop PC
can readily access them: a local or network drive. ‘DBF’ (a.k.a. xBase) table
structures have been around for many, many years and many PC applications
either use them directly or can output them as an export format. DBF tables are
also true structured data files, as opposed to plain or delimited text, XML, HTML
or text files.

One clear advantage of DBF files over some other choices is that each table
is its own file, and can therefore be identified, copied, updated or otherwise
referenced within the file structure separately from any other table. This makes
DBF files easier to work with for reporting, since tables are the fundamental unit
of reporting. Compared to using, say, Access MDB databases, DBFs are more
versatile in a data warehouse environment due to the individual storage of each
table.

Each DBF table has a header at the beginning of the file that identifies the
sizes and types of data fields, number of records, and so forth. This gives direct
context to the continuous stream of data that follows the header, which can be of
virtually any length or size. DBF tables allow for very long record length, character
field lengths of up to 254 characters, numeric fields with explicit decimals, true

Figure 3 -- Schematic for a ‘Desktop Data Warehousing’ effort, with information transfer
between end-users and IT flowing both ways, and data going directly to desktop computers.

Note: This added granularity also
protects against data corruption.
Individual tables are quickly
recoverable or not subject to any
corruption when other tables are
damaged in disk failures or bad
sectors. This is not the case when
recovering the entire database in MDB
or other formats.

Page 10 Desktop Data Warehousing

© Liveware Publishing, August 2001

date / datetime fields, and true logical fields. Each field is handled based on its
assigned type, and these types represent the fundamental data types that reporting
uses across data systems. For example, transformation of text- or numeric-stored
dates is not necessary in DBF files.

In addition to all of the above reasons, with R&R Data Warehouse one can
index the DBF files since DBF files allow for many types of indexes to exist on
them without being defined within the table itself. For data maintenance and
production data systems, this has been seen as a drawback of DBF files. For
reporting, however, it is an extreme advantage. Data warehouses, by their nature,
are not production systems so re-indexing tables can be performed without
restrictions such as locking out others. There are also many inexpensive utility
programs that will read DBF files and perform any necessary maintenance
functions without taking the files off line for any reporting or extraction needs.

In traditional data warehousing projects, Oracle, SQL Server, Sybase (as
indicated in our diagram) or some other database has often been the choice for
standardization. (See Figure 2.) While these databases are equally valid, it takes
a great deal more effort to populate them than it takes R&R to build DBFs via a
desktop data warehouse. In addition translating local data sources, such as a
spreadsheet or departmental application, to a large platform database is an
involved process; Lotus, Excel and many other PC programs can directly output
to a DBF file, saving at least one step in the data warehousing process.

Using R&R Data Warehouse the standardization process simply requires
that you specify that the R&R report should produce a DBF (xBase) file extract
in place of a printed report. R&R will automatically create the file header and
populate the DBF file, assigning the field length and type specified in the report.

Note: R&R can export any band you
specify; more about that in the section
below entitled “Accumulate and
Summarization Contexts”.

For a complete description of these
advantages, refer to the forthcoming
Liveware Publishing white paper
“Universal Join Technology and
Limitation of SQL Joins”.

Figure 4 -- R&R xBase export options with band selection.

Desktop Data Warehousing Page 11

© Liveware Publishing, August 2001

Figure 4 shows a typical xBase extract report format, with overlaying Export
dialog box.

Each R&R report designed in this manner would produce a separate data
table for the data warehouse. To produce a series of data tables, one would use
Rapid Runner to create batches of these types of reports, as shown in Figure 5.
Note that each of these ‘extract’ report formats may have a different ‘data source’
designation; one report could point to an Oracle database while the next on the
list could be a SQL Server data source.

Within Rapid Runner one may specify the ‘Data Source’ and ‘Destination’
as shown in Figure 6 (page 12), or R&R will use the settings saved with the
actual report. This means that one may modify all elements of this data extraction
on the desktop, and that any combination of these may be saved, copied,
transferred or modified among all the Desktop Data Warehouse users. Create a
set of extract reports, then the report ‘set’ – the fundamental unit of Rapid Runner
– can be defined and forwarded with the individual reports to anyone who needs
to use it. Those reports or just the Data Source and/or Destination can be modified
and saved, or simply executed once. Therefore, the modular design of the routines
to build standardized data tables in R&R Data Warehouse offers superior flexibility
to traditional data warehousing methods.

Figure 5 -- Rapid Runner ‘batch’ of reports to extract a series to a series of data tables in DBF format. Any
of these reports may be run independently, or all of them as a set.

Page 12 Desktop Data Warehousing

© Liveware Publishing, August 2001

Data Translations in a Desktop Data Warehouse

One of the most difficult aspects of combining and reporting across data
sources is that they have often evolved at different times and in different places.
This has resulted in contextual differences, particularly as these differences apply
to coding. Take, for example, a bank that merges with two others, one of which
was the result of the merger of five smaller banks. If each bank has maintained its
own account and customer databases, there will be eight separate systems, until
all of the existing data and applications can be ported to a common system.
(Also, what happens if yet another merger is planned?)

Figure 6 -- ‘Data Source’ and destination are both variables that can be set, stored, run or overridden in Rapid
Runner. This provides a very flexible mechanism for extracting data whenever to and to wherever needed.

Desktop Data Warehousing Page 13

© Liveware Publishing, August 2001

Traditional data warehousing projects have attempted to manage these
difficulties by devising translation programs and “stored procedures” to produce
translated data tables that produce common elements across all of the production
data structures. While a valid effort, such a methodology is limited since the
contextual difference will multiply faster than they could be addressed in building
those procedures.

A core function of any reporting tool is to handle a variety of contexts, which
can change rapidly or vary widely from case to case and location to location.
Therefore, our strategy (as reflected in R&R Data Warehouse) is to let the raw
data stand on its own as much as possible, and address the context when R&R
generates the final report output. When convenient the data extractions can
incorporate common, recurring translation schemes very easily, and may be
modified as circumstances or contexts change. This is not a requirement, however,
as the report format the produces the final output can include virtually any necessary
translations.

This methodology has several advantages. First, additional data sources –
resulting, for example, from the acquisition of another small bank – are quickly
translated with no modification of existing extracts. Second, R&R lets you use
the raw data, when necessary, so that the end-user can define a final report
without modification of the data extracts.

Figure 7 demonstrates one application of R&R’s translation methodology.
In this example, we are attempting to find out which customers of Bank 1 have
accounts with Bank 2 as well. “Bnk1Cust” is the table that holds customer
information for Bank 1’s account holders. This file’s primary key is social security

Figure 7 -- Data structures for two asynchonous, parallel customer tables for Banks 1 and 2.

Bnk1Cust

SOCSECNO FNAME LNAME FIRSTOPEN

387-93-0449 PAUL WILSON 07/02/1998
038-33-2991 SCOTT FITZGERALD 03/27/1997
485-30-3002 WILLIAM HAKIM 12/11/2000
129-03-9763 PENELOPE DUBOIS 09/30/1999
376-38-2043 PETER ADAMSON 04/12/1998

Bnk2Cust

SSNUM FIRSTNM LASTNM OPEN1ST

263097746 ALICE STEVENS 09/02/2000
387930449 PAUL WILSON 07/02/1998
 38332991 SCOTT FITZGERALD 03/27/1997
114160375 JANICE YABLONSKI 06/18/1999
376382043 PETER ADAMSON 04/12/1998
 45887635 THOMAS SULLIVAN 11/18/1997

Page 14 Desktop Data Warehousing

© Liveware Publishing, August 2001

number (field SOCSECNO) that is 11 characters long, and therefore includes
the dashes. “Bnk2Acct” is the account information table from Bank 2. The difficulty
is that the legacy system at Bank 2 also uses social security number (field
SSNUM), but stores it as a 9-digit numeric value with leading zeros trimmed.

This does not represent a problem for R&R. In fact, we can perform the join
one of two ways: 1) define a calculated field that produces the numeric equivalent
of SOCSECNO, or 2) define an index expression that turns SSNUM into a
punctuated character string. (We should note here that SQL does not support
either of these methods. Both fields’ values must be stored with the commonality
to produce a valid JOIN.) Figure 8 displays the second method, with a fairly
extensive but not terribly complex formula to produce the index expression from
SSNUM. It was this capability, added in R&R xBase V9, that gives 100%
flexibility to join tables and completes R&R’s exclusive Universal Join Technology.

Consolidation of Data from Disparate Data Sources

One of the most obvious functions of a data warehouse is, as the term implies,
the storage in a single location – and perhaps a single set of data files – of data
maintained in multiple locations. As in other warehousing functions, such as
distribution and trucking, data warehousing for consolidation serves a very valuable
function. A traditional data warehousing produces most of its value in data
consolidation, just as a products warehouse does so for distribution functions. A
desktop data warehouse has difficulties duplicating these functions but, as will be
demonstrated below, can either augment or replace.

Figure 8 -- Index expression to turn numeric SSNUM to the character equivalent.

Desktop Data Warehousing Page 15

© Liveware Publishing, August 2001

There are Desktop Data Warehouse functions that can streamline some
consolidation processes and eliminate others entirely. Utilizing these capabilities
of a Desktop Data Warehouse can thereby enhance the traditional data warehouse.
For example, suppose that a chain of 75 restaurants collects sales data from
duplicate systems in each of its locations. Each night every store’s computer
automatically sends the day’s sales, inventory, receipts and other data to a central
data repository where the data is accumulated into single tables for each category
to allow for regional and national management reporting.

In the above case, it would be unreasonable to expect every regional and
national manager with interest in this data to extract the data from all of the stores
via a Desktop Data Warehouse. A traditional data warehouse would serve to
consolidate data files and then make them available for reporting to anyone who
may need that data. Each record’s source restaurant would be indicated within
the record for identification. This also facilitates reporting within and across stores
for the regional and national managers who are monitoring trends or analyzing
the data.

In most traditional data warehousing projects, however, the consolidation
efforts would likely go farther and require additional development, maintenance
and storage that is not necessary where Desktop Data Warehousing is also
employed. For example, creation of time-series data files – such as separate
monthly and quarterly archive files for each set of tables, or individual regional
sets of tables – is not necessary when a Desktop Data Warehouse model is in
place. The key functions eliminated from a traditional data warehouse project
are any that further process those data files into interim, consolidated result sets.
The Desktop Data Warehouse can handle any of those consolidations and can
do so with greater flexibility than a traditional data warehouse.

One particular component of R&R’s Desktop Data Warehouse makes data
consolidation viable: the ‘multi-scan’ join. Figure 9 (page 16) demonstrates the
simplest form of this result set construction, but more robust joins are allowed,
even one that would consolidate all 75 restaurants’ data files!! (We don’t
recommend it for practicical reasons, not because the theory behind the multi-
scan join or its implementation in R&R is unsound.) In a multi-scan join, two or
more tables that have a one-to-many (scan) relation to a common parent are
joined to that parent in parallel. In the result set, each parent record produces
one record for each record found any of the related tables. To extend the example
above, if a restaurant has 250 eat-in tickets (records) for a day and 75 take-out
tickets in separate data tables, the result set will have 325 records. Every table’s
fields are represented as a portion of the composite record, with the parent
portion always containing data, but only one branch of the related tables containing
data at any time.

In effect, the two tables sharing a common parent table are merged together
as if they were one table all along, but with different fields being populated
depending on the type of record. Figure 10 (page 16) illustrates the same relation,

Note: A forthcoming update for R&R
will provide for this kind of
consolidation.

Page 16 Desktop Data Warehousing

© Liveware Publishing, August 2001

Figure 9 -- “Multi-scan” result set for ‘eat-in’ and ‘take-out’ tickets for restaurant number 15.

STORE EATINTIX TKOUTTIX

STNUM LOCATION TIXNO SIZE AMT TIXNO REGNO AMT

15 Athens, GA 12736 5 47.13
15 Athens, GA 12737 2 12.73
15 Athens, GA 12738 4 31.85
15 Athens, GA 12743 6 41.27
15 Athens, GA 12745 3 22.02
15 Athens, GA 12746 4 50.98
15 Athens, GA 12748 1 12.15
15 Athens, GA 12739 14B 21.68
15 Athens, GA 12740 18C 57.23
15 Athens, GA 12741 14B 33.64
15 Athens, GA 12742 13A 15.47
15 Athens, GA 12744 13B 18.73
15 Athens, GA 12747 14B 43.99
15 Athens, GA 12749 18C 41.16
15 Athens, GA 12750 18C 38.94
15 Athens, GA 12751 14A 17.35

Figure 10 -- Identical result set to Figure 9, presented as if the two ticket types had been
stored in the same data table all along.

STNUM LOCATION TIXNO SIZE AMT REGNO TIXTYPE

15 Athens, GA 12736 5 47.13 EATIN
15 Athens, GA 12737 2 12.73 EATIN
15 Athens, GA 12738 4 31.85 EATIN
15 Athens, GA 12739 21.68 14B TKOUT
15 Athens, GA 12740 57.23 18C TKOUT
15 Athens, GA 12741 33.64 14B TKOUT
15 Athens, GA 12742 15.47 13A TKOUT
15 Athens, GA 12743 6 41.27 EATIN
15 Athens, GA 12744 18.73 13B TKOUT
15 Athens, GA 12745 3 22.02 EATIN
15 Athens, GA 12746 4 50.98 EATIN
15 Athens, GA 12747 43.99 14B TKOUT
15 Athens, GA 12748 1 12.15 EATIN
15 Athens, GA 12749 41.16 18C TKOUT
15 Athens, GA 12750 38.94 18C TKOUT
15 Athens, GA 12751 17.35 14A TKOUT

but in a slightly different way. Instead of a wide range of empty fields as one
branch is populated at a time, the fields from the two tables are intermixed. This
doesn’t look as disjointed as in Figure 9, but the result set is 100% equivalent. In
fact, this structure for populating data tables occurs regularly in applications
software where different fields are populated at different times.

Note in Figure 9 that eat-in tickets and take-out tickets have slightly different
fields structures. Eat-in tickets have a server ID number (referencing another
data table containing the server’s identity) and take-out tickets have a packaging

Desktop Data Warehousing Page 17

© Liveware Publishing, August 2001

cost value. In this case, the consolidation is taking place across asymmetrical
data tables, in contrast to the consolidation of the 75 restaurant’s tables described
above. When a R&R Desktop Data Warehouse is in place, the only consolidation
necessary in a traditional data warehouse is for a large number of multiple
symmetrical (identical) data tables, and then only for convenience.

Figure 11 presents R&R’s Related Tables dialog box (only applicable in
R&R xBase Edition), that demonstrates the multi-scan join. First, one would
define the two one-to-many (scan) relations from the STORE (restaurant) table

Figure 11 -- R&R xBase Edition Related Tables and relation definition dialog boxes to produce the result set
in Figure 9 via a “multi-scan” join.

Page 18 Desktop Data Warehousing

© Liveware Publishing, August 2001

to EATINTIX and TKOUTTIX transactions tables. R&R automatically
recognizes that this is a multi-scan relationship, as evidenced by the activated
action button labeled ‘Group’. The relations to EATINTIX and TKOUTTIX
are grouped in parallel since R&R sees that they share the common parent table
with separate scan relations.

This is a crucial difference between R&R and any SQL-based reporting
tool. No other reporting tool (including R&R SQL Edition!!) will automatically
recognize this construction as a unique join form among tables. SQL language
can replicate this common contextual relationship between tables (often known
as the parent/child/child), but only with an extensive series of commands that no
SQL reporting tool has been able to simulate to date. A multi-scan join is not the
same as a UNION JOIN (even with a COALESCE in SQL-92), as this SQL
join is still, fundamentally, between two tables while multi-scan is a join of three
or more tables. In R&R, the designated ‘parent’ need not be a single table; the
only requirement is that the parent is a) a single table or b) two or more tables
joined with a one-to-one relation.

Multi-scan relationships in context are very common. Here are just a few
general examples:

- reporting across ‘current’ and ‘archive’ transaction tables
Ex. sales by quarter analysis from active table for the current year
and archive table for prior years

- reporting from a table in two or more contexts in a single result set
Ex. split commission statement between ‘Salesman A’ and
‘Salesman B’ for the same sales transaction

- consolidating data from multiple sources
Ex. Income statement from multiple subsidiary companies

- summarizing disparate categories of events across a shared entity
Ex. Employee benefits statement with paid time off plans, health and
welfare plans, legislative plans (FICA, Workers comp), and pension
plans from separate tables

In effect, the multi-scan join builds a result set that allows for independent,
but related, branches within it. Further, R&R recognizes each branch’s
independence, but provides for summarization across these branches as the
context requires. SQL languages and reporting tools that rely on it (including
R&R SQL) do not contain any branching controls. Therefore, any context that
requires it almost always demands the creation of a series of interim result set
and the development of procedures to prepare the necessary result set. This can
be done, of course, but the expense related to that effort is far greater than
allowing R&R’s multi-scan join to do the work.

Desktop Data Warehousing Page 19

© Liveware Publishing, August 2001

R&R contains all of the functions to merge fields across either symmetrical
or asymmetrical tables that share a common context. For example, as shown in
Figure 12, we would want to merge the eat-in and take-out AMT field values to
a single column for totaling, averaging and so on. (We use this as our example
because there are many contexts in which this would be a plausible reconstruction
on the raw data.) To achieve the new column of data, we would simply create a
calculated field in R&R as shown in Figure 13. The SCANNING() function
allows us to designate the multi-scan branch and return the value from a field (or
formula result) for that branch. These SCANNING() functions can be nested
for multi-scan relations among more than two related tables.

The result set in Figure 9 and 10 are consolidations of two tables, but a ten-
or fifty-table consolidation follows the same conventions. As one might conclude
from the formula in Figure 13 (page 20), keeping tracking of so many branches
by the user becomes a daunting task (though not for R&R itself). We recommend
that this methodology for consolidation be kept to a maximum of half a dozen or
so branches. This works fine for all of the examples sited in the bullets above, but
would not be appropriate for the example of 75 restaurants with symmetrical
data tables. This methodology does work well for the case where 50 of the
restaurants had one system and the rest had another. The traditional data
warehouse would make two sets of consolidations, then R&R would handle the
final consolidation as needs and contexts dictated.

Restructuring Raw Data for Normalized and De-normalized Tables

Tables within applications programs are maintained in a variety of data
structures designed primarily to store information for retrieval within the application.

Figure 12 -- New column for the result set based on the value of AMT in either EATINTIX or
TKOUTTIX table.

STORE EATINTIX TKOUTTIX

STNUM LOCATION TIXNO SIZE AMT TIXNO REGNO AMT TXAMT

15 Athens, GA 12736 5 47.13 47.13
15 Athens, GA 12737 2 12.73 12.73
15 Athens, GA 12738 4 31.85 31.85
15 Athens, GA 12743 6 41.27 41.27
15 Athens, GA 12745 3 22.02 22.02
15 Athens, GA 12746 4 50.98 50.98
15 Athens, GA 12748 1 12.15 12.15
15 Athens, GA 12739 14B 21.68 21.68
15 Athens, GA 12740 18C 57.23 57.23
15 Athens, GA 12741 14B 33.64 33.64
15 Athens, GA 12742 13A 15.47 15.47
15 Athens, GA 12744 13B 18.73 18.73
15 Athens, GA 12747 14B 43.99 43.99
15 Athens, GA 12749 18C 41.16 41.16
15 Athens, GA 12750 18C 38.94 38.94
15 Athens, GA 12751 14A 17.35 17.35

Page 20 Desktop Data Warehousing

© Liveware Publishing, August 2001

This retrieval process can be performed to either the screen – for reference or
editing purposes – or via reports. For most applications, by far the most common
purpose for data retrieval is for reference or editing of that data and, hence,
retrieval to the screen takes precedence in the design of the data structures.
After all, people working with the data to record or monitor individual entities or
transactions are using the data continuously.

Take as an example the role of a customer service representative (CSR) at a
travel agency. A CSR would regularly check the computer program for the status
of customers’ ticketing, account information, preferences, and so on. This could
happen dozens of times every day and the CSR would do so on the screen and
the information about the customer or reservation would be retrieved from the
stored data within the reservation application program.

With this priority in mind, most application programs’ data structures are
designed for simple retrieval to the screen. Accumulations of data elements for
common functions – such as those I described above – are maintained within the
same data record so that the computer can quickly retrieve that set of information.
Work activities – referencing an open reservation to answer a customer’s question
over the phone, for example – are much more time sensitive than an analysis of
occupancy that a hotel manager might perform on the same type of data. Therefore,
the data structure of the application program would best be designed to serve
the common, time-sensitive function.

Figure 13 -- New Calculation dialog box to define the column named TXAMT from
Figure 12. This calculation formula uses R&R xBase Edition SCANNING() function
to specify which branch of the multi-scan join to test.

Desktop Data Warehousing Page 21

© Liveware Publishing, August 2001

In our current example a typical (abbreviated) data structure for a reservation
application might look like Figure 14. There would be one table for the customers’
identities, one for their reservations, one for their account activity, and maybe
another for their preferences – including credit card numbers, room options and
other data. In Figure 14, the credit card information is “normalized” in that each
credit card number has its own record.

Another equally valid possibility for this application is where the customer
file contains fields for each customer’s three credit card preferences, since most
people have only this number or so primary credit cards. This arrangement is
shown in Figure 15 (page 22). Such a data structure is known as a “de-normalized”
structure since credit cards 1,2 and 3 are within the same record, rather than
individual records. This data structure allows for simpler retrieval to the screen
for an individual, since this credit card information is in the same record as other
information about the customer. In the normalized data structure of Figure 14,
the application would likely allow an unlimited number of credit card entries for
each customer, and would therefore need a separate screen of information to
display the list and allow the CSR to select the record in question for reference
or editing.

This situation represents the fundamental trade-off between normalized and
de-normalized data structures. Normalized structures provide greater flexibility
and more information storage, while de-normalized structures are simpler and
more direct. While not getting into a debate over which methodology is better,
the current trend in application design is toward normalized structures since they
are more robust. This does, however, increase the complexity of an application

Figure 14 -- Data structures for normalized customers / credit card preferences. Note that the
card numbers and names are just made up.

CUSTOMER

CUSTID FNAME LNAME LASTTRIP

449 BILL HILLYARD 07/02/2001
033 ALICIA GOLDSTONE 06/27/2001
4802 MICHAEL WOODS 11/11/2000
1297 FRANCES DELACROIX 12/30/2000
763 DENNIS GIBSON 03/12/2000

CUSTCARD

CUSTID CARDTYPE CARDNUM CARDEXP CARDPREF

449 AMEX 328471029384 09/2002 A
1297 MC 394872029384712 07/2003 A
763 VISA 398273492084783 06/2003 B
449 VISA 384726023094837 01/2002 B
033 AMEX 320493827481 11/2001 A
449 DINERS 3948727634012 12/2002 C
763 AMEX 320948572762 04/2002 A

Page 22 Desktop Data Warehousing

© Liveware Publishing, August 2001

program as more tables, screens and programs are needed to manage the extra
information and complexity or relationships among the data tables.

Once the data structure has been set, changing it is possible but most uses of
the data simply evolve to work within whatever structure is available. Those uses
may call for normalized data to be generated from a de-normalized data structure,
and vice versa. To address this requirement some systems have adopted a hybrid
structure that would contain both the credit card table from Figure 14 and the
credit fields from the customer table in Figure 15. A series of programs would
keep the two files in sync as one or the other was updated, but this method
necessarily adds programming overhead.

What does this discussion have to do with reporting and data warehousing?
While the normalized/de-normalized structure is typically determined by the most
common and time-sensitive uses of the data, these represent a small fraction of
the overall uses of the data. In our example, suppose there are 20 distinct processes
for referencing, editing, summarizing and reporting from the raw data. The most
common referencing and editing functions may constitute 80% of all use activities
of the data, they would represent only 20% (applying the well-established 80/20
business rule) of the different kinds of uses – four processes – of the data. That
is, for every 100 times the data is retrieved for use, 80 of those events are for
four distinct activities. The remaining 20 retrieval events represent 16 distinct
activities. The majority of these later categories of activities are retrievals for
summarizing and reporting.

In a traditional data warehouse the need to normalize and de-normalize the
data structures to address the reporting activities requires significant effort and
expense. Each translated data structure is a unique result set that traditional data

Figure 15 -- Data structures for de-normalized customers / credit card preferences with similar information to Figure
14. Note that each customer has only one record in CUSTPREF with up to three cards’ info.

CUSTOMER

CUSTID FNAME LNAME LASTTRIP

449 BILL HILLYARD 07/02/2001
033 ALICIA GOLDSTONE 06/27/2001
4802 MICHAEL WOODS 11/11/2000
1297 FRANCES DELACROIX 12/30/2000
763 DENNIS GIBSON 03/12/2000

CUSTPREF

CUSTID CARD1 CARD1NUM C1EXP CARD2 CARD2NUM C2EXP CARD3 CARD3NUM C3EXP

449 AMEX 328471029384 09/02 VISA 384726023094837 01/02 DINERS 3948727634012 12/02
1297 MC 394872029384712 07/03
763 AMEX 320948572762 04/02 VISA 398273492084783 06/03
033 AMEX 320493827481 11/01

Desktop Data Warehousing Page 23

© Liveware Publishing, August 2001

warehouses build and maintain from the application program’s data structure.
But, as the example above shows, the normalized and de-normalized structures
that are created in the data warehouse may only be needed a small percentage of
the time each is built. That would mean that the effort and expense to rebuild the
necessary result set with the required data structure is wasted unless someone
actually needs that result set.

Of all traditional data warehousing functions, this is the one best fulfilled by a
Desktop Data Warehouse. R&R provides all of the functionality necessary to
recast a normalized data structure to a de-normalized one applicable to any
particular use, and to normalize a de-normalized structure as the need requires.
R&R can do so with greater flexibility and a much shorter development schedule,
and since the recast result set is only generated on demand, there is no waste of
time and effort to generate them. (Below we will discuss one of the most common
de-normalization processes: data summarization.)

Figure 16 shows the Related Tables dialog that creates a normalized credit
card table from the de-normalized data structure in Figure 15. The “trick” to

Figure 16 -- R&R xBase Edition Related Tables and Scan Group dialog boxes for the normalization of credit card
records from CUSTOMER to CUSTPREF.

Page 24 Desktop Data Warehousing

© Liveware Publishing, August 2001

achieve this structure is the correct application of the multi-scan join functionality
in R&R xBase Edition. (SQL language does not support such a methodology –
a severe SQL limitation, by the way – so one must first extract the required data
using techniques described in the “Standardization” section above.) In all three
joins, the CUSTOMER table is joined to CUSTPREF (utilizing the CUSTID
common key, of course). R&R allows this, so long as each table used in the
report has a unique alias. For the three related (right side) tables the aliases are
CARD1, CARD2, and CARD3, respectively.

In a series of SQL joins on CUSTID, the result set would include just one
record, but in R&R xBase we can specify that each join be a “scan” relation.
R&R automatically knows to make each scan relation from CUSTOMER to
CUSTPREF a separate, parallel branch. The records from each relation are
thereby stacked, even though each relation would – necessarily – find just one
record each time. In SQL language and, hence, SQL-based reporting tools the
ability to distinguish the two contexts is not available. SQL will always use the
natural relation between the tables – one-to-one in this case – even though the
contextual relationship is one-to-many: one customer to multiple credit card
records. R&R immediately recognizes the result set structure and places the
three related tables in parallel, as evidenced by the darkened “Group” action
button in Figure 16, and the “Scan Group” dialog box also shown in Figure 16.

The remainder of the process simply involves definition of calculated fields
using the SCANNING() function to create generalized columns from the parallel
branches. Figure 17 presents the one that creates the result set field CARDNUM.

Figure 17 -- New Calculation dialog box to define the column named CARDNUM
that will produce the normalized value of the same name in Figure 14 from the
data structure in Figure 15.

Desktop Data Warehousing Page 25

© Liveware Publishing, August 2001

It is these kinds of contextual relationships, with incongruent but functional
data structures, that foil many attempts to streamline reporting. The answer of a
traditional data warehouse to overcome them, while viable, is completely
unnecessary with the capabilities of R&R xBase and its Universal Join Technology.
There are absolutely NO normalization contexts that UJT does not address
seamlessly.

Accumulation and Summarization Contexts

Perhaps the most common form of de-normalization – creation of one record
from many – is the accumulation of values in records across time or groups.
Figure 18 is typical: the raw data of sales summarized by region in the first result
set and by month in the second. If we take just the records from the result set that
are in bold, we build a new table of de-normalized sales by the new dimensions
of region and sales.

Figure 18 -- Result sets that summarize raw sales data in two separate dimension: REGION
and MONTH. Breaks in table indicate where data has been skipped for presentation. Italic
record indicates beginning of group and bold indicates the end.

SALES (sorted/grouped by REGION)

SALEDT REGION PRODLINE SALEAMT REGIONTTL

04/15/2001 NE EXCELSIOR 1150.00 1150.00
03/18/2001 NE KEYSTONE 850.00 2000.00
04/14/2001 NE EMPIRE 3948.75 5938.75

05/15/2001 NE EXCELSIOR 1005.00 12485.50
05/12/2001 NE EMPIRE 545.25 13030.75
03/03/2001 PAC KEYSTONE 2849.15 2849.15
05/28/2001 PAC EXCELSIOR 430.00 3279.15

04/22/2001 PAC EMPIRE 1500.00 6231.48

SALES (sorted/grouped by MONTH)

SALEDT REGION PRODLINE SALEAMT MONTHTTL

03/03/2001 PAC KEYSTONE 2849.15 2849.15

03/18/2001 NE KEYSTONE 850.00 7328.15
04/14/2001 NE EMPIRE 3948.75 3948.75
04/15/2001 NE EXCELSIOR 1150.00 5098.75

04/22/2001 PAC EMPIRE 1500.00 11374.00
05/12/2001 NE EMPIRE 545.25 545.25
05/15/2001 NE EXCELSIOR 1005.00 1550.25

05/28/2001 PAC EXCELSIOR 430.00 9473.63

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Page 26 Desktop Data Warehousing

© Liveware Publishing, August 2001

We can extend this example to one where we de-normalize the monthly
sales by three product lines, as indicated in the raw data by three possible values
of the field PRODLINE. Figure 19 shows the dialog box with the condition
statement to summarize only sales from the “EXCELSIOR” product line to the
total field MoExcSales.

Note: R&R could handle a de-
normalization process with 300 (or
more) product line values, but that
would be impractical and unnecessary.
Creation of a new dimension — month-
product line – makes far more sense
as this result set could always be
summarized by month or product line
independently.

Figure 19 -- Total Field and Total Condition dialog boxes to create a product line
sales total within the MONTH dimension result set.

Desktop Data Warehousing Page 27

© Liveware Publishing, August 2001

R&R handles this and other de-normalization, summarization, or accumulation
processes with equal aplomb to traditional data warehousing. There is one major
difference favoring R&R, however. Each time one de-normalizes, summarizes or
accumulates data to a new result set – as does a traditional data warehouse – the
raw data is lost for those who can only access the new result sets. In a world of
ever-shifting contexts, this is unacceptable and attempting to overcome the
limitation with a traditional data warehouse is too costly.

A Desktop Data Warehouse utilizing R&R does not suffer the same limitation
since the same tool that accumulates could return the raw data to the user who
needs it. For example, suppose the Analyst who is responsible for analyzing
monthly sales in each product line wished to exclude from the analysis a handful
of specific items within the product lines. If all this Analyst had available was the
accumulated result set – since that is all the data warehousing effort diagrammed
in Figure 2 specified – the analysis would be impossible due the existence of
unknowns. IT consultants would have to re-interview the Analyst and reprogram
the traditional data warehouse to meet this new contextual need. If R&R were
accumulating the raw data at the desktop, it would take about 5 minutes to either
temporarily or permanently create a new process or replace the former one.
With minimal training, the Analyst could do so himself or herself, with no IT
intervention and no disruption to anybody.

One more point about normalization and de-normalization in a Desktop Data
Warehouse utilizing R&R: one can do both at the same time!! R&R’s ability to
recast the raw data with normalization and de-normalization techniques allows
for ordered or simultaneous processes. Most of the time, a single R&R report
with a single set of instructions can accomplish the unique trick of turning the raw
data into the required result set and then the final output.

Conclusion

My direct experience with hundreds of organizations is that the Desktop
Data Warehouse methodology works and is far superior in flexibility and lower
cost than traditional data warehousing efforts. The cost ratio is roughly 10 to 1
with the added benefit of almost immediate results and no need to commit to a
long term effort without seeing the results and satisfying end users quickly. Ongoing
savings are even bigger, particularly when more of the responsibility and knowledge
is shifted to the end users. They are the ones, after all, that the data warehouse
effort is supposed to serve. They are the ones who understand their work functions
best.

It has been pointed out to me on many occasions that end users are “too
busy” or “don’t want to learn about data” and therefore can never handle desktop
reporting or data warehousing. There is some truth to that, but not nearly as
much as IT consultants have invested in it. For people whose jobs closely involve
information, the knowledge to slice and dice the raw data to administration,
communication and analysis duties is a requirement, not a burden. It takes much

Note: In order to elaborate further, I
would have to introduce the concepts
of first, second and third derivatives to
result sets, so the discussion of when
R&R can do so with in a single report
will have to wait for another white
paper.

Note: Traditional data warehousing
projects we’ve seen attempt to build all
the necessary result sets based on
the information flow outlined in
Figure 2. The cost rises dramatically
when the changing contexts require
definition of result sets to address
those needs.

Page 28 Desktop Data Warehousing

© Liveware Publishing, August 2001

more of their time to communication back and forth with IT consultants for every
aspect of the data warehousing project than it would be adopt the Desktop Data
Warehouse methodology described in Figure 3.

More often than not, the end user are motivated by the results, rather than
the process. End users prefer working directly with an IT consultant to produce
specific results with quick turnarounds. During those initial and later working
sessions, the end users pick up knowledge about the data structures and the
techniques to manipulate them. Each R&R report “document” created becomes
a template for the next one, and over time the end-user gathers the requisite
knowledge to undertake more advanced projects. The IT consultant then takes
on a supporting role, providing the expertise for complex issues and managing
the process.

Our firm is in the middle of such an effort with a major, national retailer who
was frustrated with a new application program for one of its departments. The
data structures are much more complex when compared to their previous system
and provided much greater flexibility. Extracting the data in the forms they need,
however, provided exceedingly difficult, so much so that even the application’s
developer had abandoned their efforts.

We were invited to show how R&R might address these needs since they
had used R&R xBase Edition with their former application. Their new app used
a SQL database, so we employed R&R SQL Edition to get started. We soon
discovered that SQL joins were not up to the task, even with R&R SQL’s inherent
capabilities. That left the client and us with three choices:

- Develop the reports utilizing a programming language such as VB to
code the output step by step from the raw data.

- Try to use another SQL-based reporting tool, such as Crystal
Reports, but likely fall victim to the same SQL limitations.

- Employ R&R Data Warehouse.

The first option was too expensive to consider except as a last resort. It
would also require another long delay. We attempted to use Crystal Reports, but
it also could not build the result sets we needed. R&R Data Warehouse did the
trick, and in just a few hours several critical reports were completed, tested,
modified and put into production.

This client has now added several other reports to the project and more are
likely to follow. The end users have received training on R&R and have begun to
learn where and how data is maintained and in which tables.

I’m quite sure that the Corporation, as opposed to the departments that
share this application, would pursue a traditional data warehouse to solve the

Desktop Data Warehousing Page 29

© Liveware Publishing, August 2001

same set of problems. But such an effort is just a multitude of smaller projects
that could be addressed with a Desktop Data Warehouse.

As I outlined at the beginning of this white paper, organizations with many
dynamics could benefit from Desktop Data Warehousing. This client met several
of the criteria and knew of R&R prior to commencing the project. They were
lucky and made the right choice. Luck doesn’t have to be the deciding factor.

About the Author and R&R Report Writer

Daniel Levin in President of Liveware Publishing, Inc., which became the publisher
of R&R Report Writer in September 1999. Mr. Levin, his partner, Christian A.
Strasser -- who also contributed to this treatise, and associates have worked over
the last decade with hundreds of companies through their consulting practice to help
those clients use their data most effectively. As an R&R Authorized Trainer beginning
in 1993, Mr. Levin has taught over 100 reporting classes and published two books
on R&R and the principles of database reporting: Relate & Report: Your Guide
to Reporting with R&R (pub. 1996) and The R&R Cookbook (pub. 2000).

R&R Report Writer Version 9.0 and R&R Data Warehouse were released in Spring
of 2001. More information about R&R and “Desktop Data Warehousing” are
available on Liveware Publishing’s web site: www.livewarepub.com. R&R is sold
throughout the world and has an estimated 500,000 users within tens of thousands
of businesses, governments, non-profit organizations and educational institutions.
R&R Data Warehouse, combining licenses of R&R xBase and SQL Editions, retails
for $700 per concurrent license seat. (Price at publication.)

Page 30 Desktop Data Warehousing

© Liveware Publishing, August 2001

Notes

This document is © copyrighted material of Liveware Publishing, Inc. It may be copied and distributed
freely, but cannot be sold or resold for any form of compensation, without expressed written permission
from Liveware Publishing. All rights reserved.

“R&R Report Writer” is a registered trademark of Liveware Publishing, Inc. Screen images from R&R Report
Writer and R&R Data Warehouse are copyrighted. “Liveware” is a registered trademark of Liveware, Inc.
and Daniel Levin. Other products’ names mentioned in this document are trademarks of their respective
publishers and owners.

