
“Dynamic List ParameteRRs”

Strategies for Creation, Maintenance and Presentation of Table-Driven,
Runtime Variable Value Selection for Reporting

A White Paper From Liveware Publishing

By Daniel Levin

© Copyright April 2005

Page 2 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

History of End-User Prompting for Report Variables

Beginning with R&R v9.0 released in April of 2001, Liveware has
sought to expand R&R functional ability to present runtime entry variables
to the end-user. Within R&R v9.0, Liveware introduced “ParameteRRs” –
constant values that an end-user could specify whenever the report was
generated, in order to control various aspects of the report’s generation.

Typically, ParameteRR entries controlled the query/filter, but they
could also impact formulas, control sorting and grouping, linking, or any
other item where a constant value – which would vary from one report
generation occurrence to the next – was required. ParameteRR could contain
any base R&R data type, including character, numeric, date, date/time or
logical value. The report’s designer could restrict the allowable entries by
virtue of a validation expression that must be true based on the end-user’s
entry at runtime. In addition, R&R would control the data type entry, and
present the entry based on the designer’s formatting selections.

The initial ParameteRR methodology introduced in R&R v9.0
successfully dealt with many of the most common runtime entry
requirements. Users could now enter, for example, start and end dates to
control the report’s generation. Still missing, however, were two very
common input options. The first is a static, pre-defined list of available
options; this is where the selection each option would result in a significantly
different result at runtime. Version 9.0 ParameteRR could be made to mimic
this kind of static list by using a combination of the text instructions and
the validation formula to allow only certain entries. This methodology was
difficult and only worked with a very short set of available options (at least
based on the limitations of the text instructions). With the release of R&R
ReportWorks in January of 2005, Liveware addressed this limitation by
allowing an actual list of available, pre-defined options. Each option had

Dynamic List ParameteRRs Page 3

© Liveware Publishing, April 2005

its own description, and the report’s designer could decide the order of the
items in the list and a default value.

With the implementation of static-list ParameteRRs, only one
category of commonly prompted runtime inputs remained: lists based on
values in the database, a.k.a. a “dynamic” list. Such lists might either be
too long or too subject to change (or both) to be pre-defined in a static
ParameteRR. For example, a list of customer IDs would be changing
regularly and may include hundreds or thousands of possible selections.
Up through the present, Liveware has recommended the creation of a
ParameteRR to hold the end-user input value for such an item, and instruct
the designer to provide instructions to the end-user on how to lookup the
correct value in the application itself. Admittedly, this was hardly
satisfactory, but it was the best advice we could offer at the time.

Where a dynamic list was essential to effective runtime control,
many application developers would choose one of two options. Some would
opt to eschew a report writer in favor of defining reports within the
application programming language itself. (See Figure 1.) Other developers
(those that use R&R) would place within the application an entry screen
that presents to the end-user the possible values from the database. Then
the developers would send the selections to R&R via the RIPARAM()
function, or via links to a DBF report control table that holds the selected
values. (R&R Report Librarian uses this latter technique for some of its
runtime reports.)

Figure 1 – Example of user input from a list of database values, from IAS Accounting.

Page 4 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

For a number of obvious reasons, Liveware does not like the idea
that developers would choose not to use R&R for reporting due to dynamic
list limitations. However, we also do not like the notion that a developer
would have to build a special input screen to run a report. Therefore, we
have designed R&R’s dynamic, table-driven ParameteRRs so that the entire
end-user interface to capture runtime inputs is specified within the R&R
report itself.

Dynamic List ParameteRRs in R&R Report Designer

Beginning with the R&R ReportWorks release for April 2005
(Report Designer and Runtime modules v11.1), report designers may specify
the new type of ParameteRR which is based on a .DBF table’s contents.
Those contents are entirely within the control of the report’s designer; R&R
will simply read and present to the end-user the table’s records as they are
stored in the .DBF file. Then the end-user will select the input value from
the designated column from the table.

Figure 2 – ParameteRR “Value” tab with Static/Dynamic List options

Dynamic List ParameteRRs Page 5

© Liveware Publishing, April 2005

Within the ParameteRR definition dialog, we have added a new
selection on the “Value” tab. When the designer checks the option to define
a validation list, he or she will be presented with the option for either a
“Static” or “Dynamic” list. (See Figure 2 at left.) The “Static” lists are all
existing list-based ParameteRRs, and they will be unchanged.

The designer’s selection of a “Dynamic” list will cause R&R to
offer new options on the “Validation” tab (shown above). The designer will
then specify the .DBF file that will contain the records to be presented to
the end-user at runtime. Once that table is selected, the designer then
indicates which field (column) of the target table contains the values that
will be returned to R&R to serve the ParameteRR’s value. R&R will only
list the fields of the data type specified on the “Value” tab; changing the
data type on that tab will invalidate the prior field selection.

Once specified, the Dynamic ParameteRR’s field can be used in
any valid R&R context based on data type. Other contents of the .DBF are
only present to assist the end-user in selecting the desired value from among
the options presented in the target data field.

Figure 3 – ParameteRR “Validation” tab for Dynamic List specifications

Page 6 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

Creation of the .DBF File for a Dynamic ParameteRR

Since the R&R will only present the .DBF file, the designer should
take sufficient care in its creation so that it presents the end-user with
information that assist in the selection of the ultimate ParameteRR value.
Liveware has opted to require .DBF files – as opposed to other table formats
– for several reasons. First, .DBF is a non-proprietary file structure so no
specially licensed software is required to create them. Second, .DBF files
can be easily updated or overwritten without undue database management
overhead. Third, .DBF files already contain column names which R&R
will display as column headers. Fourth, .DBF files include data fields or,
essentially, the same data types as R&R would use in its various contexts:
character, numeric, data, date/time, logical.1 Fifth, R&R already contains
all of the code to read .DBF files for regular reporting purposes. Sixth,
R&R can itself create the .DBF files that its own reports may need to use.

R&R SQL Report Designer and Runtime will also use .DBF files to
populate Dynamic ParameteRRs, even though these tools are designed to
read other types of database tables. For reasons described below, this is
still the most efficient way to provide for table-driven ParameteRR
selections, even in the SQL environment.

Any table will contain a list of fields of various data types. The
simplest table contains just one field; in the context of a Dynamic
ParameteRR such a table would list only the available values. While such a

Figure 4 – Simple table with customer codes and descriptions

1 Dynamic ParameteRRs for logical fields are not applicable, since the only two options
are TRUE and FALSE. This is hardly meaningful in a dynamic context.

CUSTCODE CUSTNAME CITY STATE

AAC Allied Appliance Co. Dearborn MI
AALP American Alpine Supply Boulder CO
ABK Albert’s Books Ithaca NY
ACCD Accounting Dynamics Athens GA
ACO Alfredson Company Wilmington NC
ADY Adylford’s Florist Bakersfield CA
ALRI Alarm Results, Inc. Princeton NJ
AMMD Amarillo Motors & Drivers Amarillo TX
AMX American Expresss Corp New York NY
APR Assoc. Product Mfg. Gainesville FL
AUI Alabama United, Inc. Huntsville AL
AVLE August Von Lear Co. Pittsburgh PA
AWI Advanced Watches Inc. Evanston IL
AWIB Advanced Watches (Balto) Baltimore MD
BAE William A. Early Inc. Jackson MS
BBI Balanced Breakfast Inc. Gary IN
BCLD Birmingham Closet Distrib. Birmingham AL
BCM Berringer Climate Seattle WA

Dynamic List ParameteRRs Page 7

© Liveware Publishing, April 2005

table would work within R&R, most of the time the table value passed to
the R&R ParameteRR will be a coded character or numeric value
representing that record. For example, Figure 4 displays a typical Customer
database, where the customer code column contains the values that will be
passed to R&R. While the code values are all that R&R cares about, the
end-user, in order to make the correct selection, would need more
information than simply the codes. Certainly, the customer’s name and
location would assist the end-user’s selection. While this sample table
includes just code, name, city and state, the report’s designer must decide
what additional columns will be needed in the table.

The next example illustrates this point in a bright light. Suppose,
instead of the customer code, the user must select an invoice number from
a long list of available entries. For such a need the designer should probably
include the invoice date, the customer code and customer name, invoice
status, and total invoiced amount. (See Figure 5.) Even under those
circumstances, that information might not be enough since all of the fields
shown could contain identical reference information for two or more records.
(In this circumstance, the same customer could order the same amount twice
on the same day.) Therefore, the .DBF file presented to the end-user many
have to contain many more columns than one might initially suspect.

Figure 5 also illustrates another critical aspect of table-driven
ParameteRR value selection. In most modern software applications,
relational tables will contain only information sufficient for storage within
the table. The table containing invoice header information (such as the
invoice number, date, amount and status) would not typically contain the

Figure 5 – Sample table with multiple invoice data columns

INV_NUM CUSTCODE CUSTNAME INV_DT STAT INVAMT

29380 KRD Kramer Dynamics Co. 01/12/05 O 1250.37
29432 JJE John J. Early, Inc. 01/17/05 O 39283.45
29543 ABK Albert’s Books 01/19/05 P 283.00
29544 ABK Albert’s Books 01/19/05 P 283.00
29594 ILQ Int’l Liquids 01/19/05 O 29837.28
29596 DJEL Elvis DJ Entertainers 01/19/05 O 293.73
29597 WAS Washington Supply 01/19/05 I 387.54
29599 DUE Duluth Environmental 01/19/05 O 3827.47
29600 OLWR Oliver Warehousing 01/19/05 P 570.00
29604 LIVA Liverpool Vanities 01/19/05 O 981.25
29606 UNTH United Theaters 01/19/05 P 45.29
29607 APR Assoc. Product Mfg. 01/19/05 O 1093.50
29609 RED Redding Muffler 01/19/05 O 283.09
29610 GRN Granger Pharmacy 01/19/05 O 94.26
29611 GRN Granger Pharmacy 01/19/05 O 104.27
29613 UNT2 United Theaters II 01/19/05 P 538.30
29614 EFR Efficiency Radiation 01/19/05 C 9371.36
29615 SEY Southeast Yard Maint. 01/19/05 O 847.99

Page 8 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

customer’s name, which is a key piece of information needed for the end-
user to select the desired invoice record. Therefore, simply having R&R
read and present an application’s stored table would rarely suffice in the
context of a table-driven ParameteRR. The prompting table will almost
always have to be generated in advance of the report.

All tables contain a set of records in a particular order. Further,
each record contains field entries, each field has a name, and fields appear
in some order, Each of these table elements is important to the context of
assisting an end-user to find the record containing the correct value to
transfer to the ParameteRR. Figure 6 demonstrates the issues that ensue
when some of these elements are ignored or misapplied. In the sample
table on the top of Figure 6, the records are sorted by the first column, the
customer code. This will make the table difficult to use in the context of

Figure 6 – Generic data table (top) versus specially prepared data table (bottom)

CID CCTY CST CDESC

03299 Carlsbad NM Regal Automotive, Inc.
19277 Ames IA Whitaker Hospitality
21736 Palmdale CA Phillips Service Station
33309 Petersburg VA Hansen Accountants
38274 Dover NJ Landscaping & More
43382 St. Paul MN Sherman Consulting Group
47210 Tampa FL General Brokerage Inc.
55201 Fresno CA Fresno Tire
68832 Topeka KS Rollins Trucking
72341 Staten Island NY Richmond Dry Cleaners
88734 Hampton VA Towne Liquor Mart
94421 Watkins Glen NY Travelers Aid & Support
94832 Boise ID Miller Services Co.
95802 Columbus OH Berger, Howard PC
99382 Portland OR Portland Paving, Inc.

CUSTNUM CUST_NAME CITY STATE

95802 Berger, Howard PC Columbus OH
55201 Fresno Tire Fresno CA
47210 General Brokerage Inc. Tampa FL
33309 Hansen Accountants Petersburg VA
38274 Landscaping & More Dover NJ
94832 Miller Services Co. Boise ID
21736 Phillips Service Station Palmdale CA
99382 Portland Paving, Inc. Portland OR
03299 Regal Automotive, Inc. Carlsbad NM
72341 Richmond Dry Cleaners Staten Island NY
68832 Rollins Trucking Topeka KS
43382 Sherman Consulting Group St. Paul MN
94421 Travelers Aid & Support Watkins Glen NY
88734 Towne Liquor Mart Hampton VA
19277 Whitaker Hospitality Ames IA

Dynamic List ParameteRRs Page 9

© Liveware Publishing, April 2005

selecting those codes, because the end-user will most likely know the
customer’s name, not their numeric code. The bottom table correctly sorts
the records by customer name, making the task of locating the desired
customer code much simpler.

In Figure 6, there are other advantages of the bottom table. The
column headers are descriptive, in place of the generic field names from
the source application found in the top table. The customer name is also
immediately to the right of the customer code, rather than two columns
over. As Figure 6 illustrates, the table’s contents, field names, field order,
record order, and record selection are all important at various times for
various table-driven ParameteRRs. In order to make the entire effort work
– and worthwhile – the designer must be able to build the .DBF file from
the ground up.

Liveware’s software engineers and designers discussed this issue at
length, and analyzed several possible methodologies that might assist a
report’s designer to create the .DBF file for a table-driven, Dynamic
ParameteRR. As the analysis progressed, we first determined that we might
offer the designer a dialog box within the Dynamic ParameteRR definition
screen with options necessary to define the .DBF file. In that way, the R&R
report could contain all the instructions necessary to build the prompting
.DBF file. We ultimately rejected such a design – at least for now – as too
restricting. We found that this dialog would have to contain, essentially, all
of the R&R functions necessary to design a report, except for the layout.
That includes calculated and total fields, sorting, grouping, filtering, etc.

The other limitation we found disturbing was that R&R would have
to rebuild the .DBF files every time it ran the report, which may cause
undue delay in the processing of the main report. If the .DBF file already
existing that would serve the table-driven ParameteRR, R&R should just
be able to present it.

Based on these two considerations, we decided that the report’s
designer would specify the .DBF file for R&R to present to the end-user.
R&R would simply present whatever data was in that file, and leave it to
the report’s designer to insure that the .DBF file contained what he or she
intended.

Page 10 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

Strategies for Preparing the .DBF File for Dynamic ParameteRRs

The final design described above was not the culmination of our
analysis, however. We knew that for table-drive ParameteRRs to be effective,
we had to offer strategies for the report’s designer to create the necessary
.DBF files containing the input and prompting values, and to have the file
refreshed when needed. Fortunately, R&R itself could perform any of the
data processing functions to create or refresh the .DBF file. R&R could do
so by means of a separate report specification that would create the target
.DBF file, whether from the SQL or xBase report designer. Further, report
designers could use any other tool that produces .DBF files (as most data
management programs do) if they so chose. 2

We will review in some detail, below, considerations when building
the .DBF file using either R&R or some other program (although we will
demonstrate the issues using R&R’s Report Designer). But first, we must
address the critical issue of timing the creation or refresh of the .DBF file.

As described above, R&R at runtime will present the .DBF file for
table-driven ParameteRRs as it exists at that time. How often that .DBF file
will need to be refreshed is an issue the report’s designer must address at

Figure 7 – Sample table with salesperson data

SLSCODE SLS_NAME TERRITORY STATUS

P3984 Williams, Joseph P Pacific ACTIVE
N0357 Stevens, Monica Northeast ACTIVE
S9388 Abdul, Hakim Southest ACTIVE
M1193 Jenkins, Walter R Mountain TERMED
M3847 Taylor, Rachel G Mountain ACTIVE
N0498 Rotelli, Anthony J Northeast ACTIVE
L9928 Polchek, Andre Lakes LEAVE
T3401 Busch, Randall Texas ACTIVE
P2901 Hardinger, Joan Pacific ACTIVE
P4387 Richards, Dick R Pacific TERMED
A4833 Thompson, William Atlantic TERMED
N3912 Stringer, Becky A Northeast ACTIVE
A0948 Dole, Libby Atlantic LEAVE
L2883 Travis, James A Lakes ACTIVE
S9228 Reynolds, Alexander Southeast ACTIVE
S1128 Tasker, Robert J Southeast LEAVE
A9011 Patterson, Linda m Southeast XFERD
T7711 Sanchez, Jose Texas ACTIVE

2 Some may question why we did not adopt XML as the standard format for table-driven
ParameteRRs, instead of .DBF. XML, they would argue, is becoming the standard for
data interchange. We do not agree with that assessment, and XML has disadvantages of
.DBF files for structured data files. XML requires lengthy text tags, which are often many
times larger in space consumed than the data presented. Use of XML format would require
the resulting data file to be that much larger and to take that much longer to rebuild.

Dynamic List ParameteRRs Page 11

© Liveware Publishing, April 2005

design-time. That answer is driven primarily on the context of how the
report will be used. More specifically, the question to ask is: just how
“dynamic” does this Dynamic ParameteRR need to be.

A couple of examples can illustrate this point. Figure 7 shows the
table needed to allow an end-user to select a salesperson code for a
prospective monthly commission report. The party running the report would,
most likely, be a sales department manager or clerk who would know the
salespeople, if not always remember their codes. The salesperson table in
the application software would be the source of the table-driven ParameteRR
information, but direct use of that table would not make sense since it would
likely contain dozens of fields, most of which are of no use to the person
running the report. The only information the sales manager or clerk would
care about are the salesperson code (to pass to the ParameteRR), name (to
correctly ID the salesperson in question) and, perhaps, current status. Better
still, it would be ideal if the table contained only salesperson records for
whom the manager or clerk might wish to generate the monthly commission
report.

If the context for the monthly commission report’s use is always
exclusively the current month – as, for example, to attach to a commission
check – then a monthly refresh of the .DBF file with just active salespeople
would be ideal. Unless, of course, this report is used throughout the month
and salespeople are added to the database all the time. Then the .DBF file
for the table-driven ParameteRR might need refreshing each time the report
is run.

That last extreme case would be the exception, however. Many
reports will require that their table-driven ParameteRR be refreshed only
occasionally. The life-cycle of the .DBF file will depend on several factors
including:

1) How often are records added to the source tables?
2) How often is critical identity information for existing records

changed?
3) Can including some additional information in the .DBF file

negate the need to refresh the .DBF file as frequently?
4) How likely is it that the end-user will not be able to select

the correct ParameteRR value from the .DBF file, either by
selecting the wrong value because it changed or because it
was not included in the .DBF file R&R presented?

5) How much confusion is caused by inclusion of records in
the .DBF file that the end-user would never select?

6) Will inclusion of records that the end-user would never select
result in a .DBF file that contains so many records that the
end-user can’t easily locate the record they want?

Page 12 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

There are no straight-forward answers to these questions and they require a
knowledgeable balancing to reach the correct conclusion.

During our evaluation process, we debated all of these questions
and decided that always refreshing the .DBF file for ParameteRR prompting
was unrealistic. Such a methodology, while eliminating all of the above
refresh timing issues, would cause undue delay in processing the report.
Further, we determined – from our extensive3 knowledge of applied
reporting – that few reporting applications would require continual refresh
of the table-driven ParameteRR data. And for those rare cases, R&R give
developers the tools to refresh the .DBF file whenever it is necessary.

In the end, we decided that it was wiser to allow the report’s designer
or application developer to determine the method and timing of the .DBF
file refresh by a contextual balancing of the factors above. To see how
decision that might apply in the ‘real world’, we will return to our example
salesperson commission report.

With just the information provided above, issues 1) and 4) are
probably the most critical ones to address in this context. If the sales manager
or clerk attempts to run the commission report and the company had added
the desired salesperson since the last refresh of the .DBF file, then use of
the report hits a wall. The report’s designer could, however, offer an
alternative ParameteRR to accept a value that was not listed in the .DBF
file. The clerk may have to then look up the correct value in the application
software.

On the other hand, if the company is large and adding dozens of
salespeople all the time, the regular refresh – perhaps requiring up-to-the-
minute .DBF file refresh – could be necessary to make the report truly
useful. That would probably be the exception, however.

After any evaluation that balances the factors described above, the
answer to the ‘when-to-refresh’ question will be either ‘on-demand’,
‘periodically’, or ‘always’. R&R supports techniques for each answer, as
we illustrate below.

We will start with the ‘always’ answer; that is, the target .DBF file
must be refreshed each time the R&R report calling for it is run. In nearly
every case where this is required, the R&R report would be activated via
the Runtime module. A developer in this circumstance would have two
options: create the .DBF file via their application program or some other
tool or first run an R&R report that refreshes the Dynamic ParameteRR’s
target .DBF file. Since the developer would already be using R&R Runtime

3 Liveware’s design and development team includes a total of almost 50 years of cumulative,
direct experience with reporting applications for hundreds of clients.

Dynamic List ParameteRRs Page 13

© Liveware Publishing, April 2005

Figure 8 – ParameteRR entry screen that would control whether a Dynamic ParameteRR’s
data file would be refreshed or not

to generate the final report, he or she could instruct the application program
calling Runtime to first generate the target .DBF file via an R&R report
that builds the .DBF file in the folder location anticipated by the second
report. In theory, if multiple target .DBF files were needed, the developer
could run several R&R reports (or other programs) to create or refresh
those target .DBF files.

While the approach described above could take some time to execute,
and the end-user would have to wait until completion before making their
final ParameteRR selections, the wise developer could a) include either a
“wait” notice while the target .DBF files were being built, b) offer the end-
user options as to whether to refresh all or a specific target .DBFs, or c) a
combination of the two. While an R&R ParameteRR could present such an
option (see Figure 8 above), we expect most developers would offer a
programmatically-control screen to give end-users some information to
assist them with the refresh decision, such as the date/time the target .DBF
file was last modified or refreshed.

Page 14 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

If the developer would rather NOT bother with the coding to present
the end-user with the controls to rebuild the target .DBFs, R&R’s Rapid
Runner module can perform the same function. As shown in Figure 9, Rapid
Runner is designed to run either a set of reports in sequence from a batch,
or the end-user can also designate just those reports from the batch they
wish to run. Since that is exactly the issue described above, Rapid Runner
is the ideal tool for the job. (Note that a developer may launch a Rapid
Runner report set from within an application program in the same way that
they launch R&R Runtime.) Since the final report that calls the target .DBFs
would need to run last, the developer would list that report last (as shown
in Figure 9) and the end-user could simply select only that final report to
run if they knew it was unnecessary to refresh any of the target .DBF files.

When a developer decides that only periodic refreshing the target
.DBF files is warranted, the weight of programming needs diminishes
greatly. Our experience is that most reporting applications would be well-
served with periodic refreshing, whether the period is daily, weekly, monthly
or even hourly.

When R&R reports are generated via Runtime called from an
application program, a developer can build in commands to rebuild the

Figure 9 – Rapid Runner report set with .DBF file rebuilds and final report

Dynamic List ParameteRRs Page 15

© Liveware Publishing, April 2005

Figure 10 – Sample data table that would rarely require a data refresh

DEPTCODE DEPT_DESC DIVISION HEADCT2005

1640-3 Accounting ADMIN 17
2820-4 Advertising SALES-MKTG 10
3740-2 Banding PRODUCTION 37
2019-4 Bidding SALES-MKTG 3
1827-2 Casting PRODUCTION 12
0293-1 Executives EXEC 4
4920-3 Facilities ADMIN 6
2911-3 Human Resources ADMIN 10
2810-2 In-line processing PRODUCTION 56
1027-3 Logistics ADMIN 5
2109-4 Marketing SALES-MKTG 4
2019-2 Metalworking PRODUCTION 25
3722-2 Packaging PRODUCTION 9
1928-3 Purchasing ADMIN 2
0293-3 Research and Development ADMIN 4
0192-4 Sales SALES-MKTG 14
4322-2 Shipping PRODUCTION 6
2218-2 Warehouse PRODUCTION 10

target .DBF files in the background. Another option is to add menu options
to refresh batches of target .DBF files with recommended frequencies.

A programmatic approach is not the only one available. Application
or reporting administrators could simply schedule themselves or other
programs to launch a series of R&R reports that generate refreshed target
.DBF files, or those same parties can create Rapid Runner batches that
perform that maintenance function. (E.g., see Figure 9, but without the last
report entry.) These target .DBF files could – and probably should – reside
in special folders on the network, so that R&R can find them whenever an
end-user needs to run a report. Since Rapid Runner includes a scheduler,
these refresh activity can occur unattended; we suspect that’s how most
administrators will resolve to perform the function.

In effect, periodic refresh of these Dynamic ParameteRR target .DBF
files produces a sort of data warehouse for custom reporting applications.4

We have designed R&R so that the target .DBF files are only in use while
an end-user is making a selection from within the window. Multiple parties
could access the same target .DBF file simultaneously, but overwriting of
an open file would, naturally, be disallowed. This is another good reason to
schedule refresh of most of the target .DBF files for off-hours.

4 We have discussed this approach at length in other white papers, including the one
entitled “Desktop Data Warehousing” available on Liveware’s web site at
www.livewarepub.com/white_papers.htm.

Page 16 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

Figure 11 – ParameteRR dialog with “Instructions” to execute a data refresh on the target
table controlling the Dynamic ParameteRR

Certain target .DBF files would rarely need to be refreshed. For
example, a report where the Dynamic ParameteRR would contain a
department code calls for a target table that hardly ever changes. (See Figure
10.) In some cases, a Static ParameteRR may be appropriate, but if the list
of departments is long or the designer wishes to display several pieces of
data about the department (in addition to the code and description), a
Dynamic ParameteRR serves the purpose better. In addition, the same target
.DBF file can apply to multiple reports, while a Static ParameteRR would
need to be created or changed in each report where it was defined.

The refresh for this target .DBF file is ‘on-demand’, in that there is
little reason to update it unless circumstances warrant it. That would occur
either when their was a documented change to the source data, or when an
end-user could not access the department code needed for the Dynamic
ParameteRR value because it was either not in the table or not clearly
marked. (See factors 1 and 4 above.) To address these occurrences, we

Dynamic List ParameteRRs Page 17

© Liveware Publishing, April 2005

suggest that the instruction box that accompanies the ParameteRR entry
contain a message similar to that should in Figure 11 (page 16).

R&R Runtime creates a separate window, so it should be possible
to execute another program or R&R report that rebuilds the target .DBF
file while keeping the original report’s ParameteRR dialog active. If the
application developer did not want to allow this, the end-user could always
terminate the report, run the process to rebuild the target .DBF file, then
execute the original report again.

There are a few other considerations for preparing and maintaining
these target .DBF files. For most reporting applications the same values are
needed to populate many Dynamic ParameteRRs. Customer code or
department code would often be a value requested by many reports for
many different purposes. While the contexts for making the selections may
be slightly different, many times the same target .DBF file can be used on
many reports simply be adding a little more information to those tables.
Since the target .DBF files might be refreshed on a more aggressive schedule
for some reporting needs than others, all reports that share the same target
.DBF file could gain the advantage of the most aggressive refresh schedule
for that table.

Further, the target .DBF file need not contain only data from the
application’s tables. In addition to deriving values from that data (including,
for example, total YTD sales as shown in Figure 12), report designers can
add reference text and define more explicit column headers in order to
assist the end-user.

Figure 12 – Customer information with YTD sales and other reference info

CUSTCODE CUSTNAME FYTD_SALE NOTE1

AAC Allied Appliance Co. 2920.13 Last Sale:03/13/05
AALP American Alpine Supply 47738.02 Last Sale:11/24/04
ABK Albert’s Books 11284.88 Last Sale:10/10/04
ACCD Accounting Dynamics 328.17 Last Sale:09/07/05
ACO Alfredson Company 49003.40 Last Sale:02/19/05
ADY Adylford’s Florist 8374.29 Last Sale:12/31/04
ALRI Alarm Results, Inc. 3772.00 Last Sale:11/29/04
AMMD Amarillo Motors & Drivers 120.00 Last Sale:08/11/04
AMX American Expresss Corp 0.00 Last Sale:02/17/03
APR Assoc. Product Mfg. 2664.43 Last Sale:03/02/05
AUI Alabama United, Inc. 993.25 Last Sale:04/30/04
AVLE August Von Lear Co. 11827.23 Last Sale:07/13/04
AWI Advanced Watches Inc. 29304.02 Last Sale:11/18/04
AWIB Advanced Watches (Balto) 180.20 Last Sale:12/02/04
BAE William A. Early Inc. 0.00 Last Sale:10/19/05
BBI Balanced Breakfast Inc. 1283.23 Last Sale:10/03/04
BCLD Birmingham Closet Distrib. 473.99 Last Sale:02/12/05
BCM Berringer Climate 32827.10 Last Sale:01/08/05

Page 18 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

At times, even the target .DBF file’s column containing values to
pass to the Dynamic ParameteRR may need to be derived. In some
application programs, one must combine more than one field to determine
a unique key, as demonstrated in Figure 13. Assuming consolidated reporting
on several separate “divisional” databases, the customer code and division
ID combine to form a unique value.

Presentation of Target Table to End-Users via R&R Runtime

All of the report designer’s and developer’s efforts achieve fruition
when an end-user activates an R&R Runtime report and is asked to populate
the value for a Dynamic ParameteRR. As shown in Figure 14, Dynamic
ParameteRRs are displayed in the list just like other ParameteRRs. When
the end-user selects the Dynamic ParameteRR to assign a value (which
will always default to null for the data type), the end-user may either input
the value or click the icon adjacent to the entry box to view the target .DBF
file. As with any other ParameteRR the report’s designer may specify
instructions to assist the end-user.

The report’s designer defines, as described above, the path and .DBF
file name within the report itself. When the end-user attempts to view the
target file, R&R will first try to locate that file in the path stored within the

5 In SQL reports, master table file path does not apply. Therefore, R&R would skip this
step.

Figure 13 – Dynamic ParameteRR target table with a compound unique key, one made from
two or more data field in the source table

UNIQUE_KEY CID DIV CDESC

03299NE 03299 NE Regal Automotive, Inc.
19277MW 19277 MW Whitaker Hospitality
19277SW 19277 SW Whitaker Hospitality - AZ Region
19277WE 19277 WE Whitaker Hospitality - CA Region
21736WE 21736 WE Phillips Service Station
33309AT 33309 AT Hansen Accountants
38274NE 38274 NE Landscaping & More
43382MW 43382 MW Sherman Consulting Group
47210SE 47210 SE General Brokerage Inc.
47210WE 47210 WE General Brokerage Inc.
55201WE 55201 WE Fresno Tire
68832MW 68832 MW Rollins Trucking
72341NE 72341 NE Richmond Dry Cleaners
88734AT 88734 AT Towne Liquor Mart
94421NE 94421 NE Travelers Aid & Support
94832WE 94832 WE Miller Services Co.
95802MW 95802 MW Berger, Howard PC
99382MW 99382 MW Portland Paving, Inc.

Dynamic List ParameteRRs Page 19

© Liveware Publishing, April 2005

Figure 14 – Dynamic ParameteRR selected in the ParameteRR entry dialog at runtime

report. If R&R can’t find the file in that folder, it will attempt to locate it in
the folder for that report’s master table.5 If the target .DBF file is not in that
folder, R&R will check the folder where the report itself resides. Lastly,
after these unsuccessful location attempts, R&R will prompt the end-user
to locate the .DBF file in another folder by offering the Windows file locator
dialog. Once the user has specified a folder location for the target .DBF
file, if the report has any other Dynamic ParameteRR R&R will search that
user-selected folder prior to again presenting the Windows file locator dialog.

Report generation is not conditioned on the existence or ability to
locate the target .DBF. The end-user can input a value or allow R&R to
process the report with a null value for the ParameteRR. Therefore,
unattended use of R&R runtime can continue even though the report contains
a Dynamic ParameteRR. When designing reports that are intended for
unattended generation (as, for example, to be used via Rapid Runner
scheduling), one should avoid Dynamic ParameteRR or allow for valid
operation with either an alternate null or default value.

Page 20 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

When the end-user clicks to icon to display the target table, R&R
will display a modal window with all of the information from the .DBF
file, as shown in Figure 15. In the window header R&R will display the
target file name and path, date and time created, and the ParameteRR name
that will be populated. The end-user can resize the window to allow for a
wider view of the data as their monitor allows. Standard Windows scroll
bars are provided for both vertical and horizontal movement.

The left-most column of the table will always be the target field
that contains the list of possible values for the ParameteRR. These values
need not be unique; that is, the same value can appear multiple times within
the table, if that’s what is in the .DBF file. This column will always be
locked on the left, so that even if the end-user scrolls right to view additional
columns, the end-user will always be able to view the available values.

As previously explained the remainder of the table’s fields will be
displayed in the order they are stored the .DBF file. Similarly, records are
listed in the order they reside in the .DBF file, so care should be taken in
sorting of the records when building the .DBF file.6

6 The code necessary to allow for manipulation of the .DBF file within the window would
be extensive, and would dramatically increase the size of the R&R runtime executable.
The increased executable file size would significantly slow down loading runtime, so we
decided that this deficit outweighed the benefits.

Figure 15 – Selection window for Dynamic ParameteRR value

Dynamic List ParameteRRs Page 21

© Liveware Publishing, April 2005

To select the record containing the target column’s value to populate
the ParameteRR, the end-user simply clicks the mouse on the row of the
table. The window reflects the selection with <TBD>. Then end-user can
then hit <ENTER> or click the “Select” action button to confirm the
selection. The end-user can, alternatively, hit <ESC> or click “Cancel” to
return to the previous dialog.

Upon the end-user’s selection of the desired value, the ParameteRR
dialog will present the entry in the box as shown in Figure 16. The end-user
can select a different value by again clicking the icon to present the .DBF
file window, or delete or edit the value placed in the entry box.

Summary

Dynamic ParameteRRs offer report designers and system developer
many new options to employ and deploy R&R reports. While some care
must be taken to effectively implement this new feature, the positive returns
are substantial.

Figure 16 – Dynamic ParameteRR value selection transferred from data table window

Page 22 Dynamic List ParameteRRs

© Liveware Publishing, April 2005

This document is © copyrighted material of Liveware Publishing, Inc. It may be copied and distributed
freely, but cannot be sold or resold for any form of compensation, without expressed written permission
from Liveware Publishing. All rights reserved.

“R&R Report Writer” and R&R ReportWorks are a registered trademark of Liveware Publishing, Inc.
Screen images from R&R Report Writer and R&R ReportWorks are copyrighted. “Liveware” is a registered
trademark of Liveware Publishing, Inc. Other products’ names mentioned in this document are trademarks
of their respective publishers and owners.

About the Author and R&R ReportWorks

Daniel Levin is President of Liveware Publishing, Inc., which became the
publisher of R&R Report Writer in September 1999. Mr. Levin, his partner,
Christian A. Strasser, and associates have worked over the last decade and a
half with hundreds of companies through their consulting practice to help those
clients use their data most effectively. As an R&R Authorized Trainer beginning
in 1993, Mr. Levin has taught over 100 reporting classes and published two
books on R&R and the principles of database reporting: Relate & Report:
Your Guide to Reporting with R&R (pub. 1996) and The R&R Cookbook
(pub. 2000).

R&R ReportWorks superseded R&R Report Writer Version 10+ upon its release
in January 2005. More information about R&R and other white papers and
educational resources are available on Liveware Publishing’s web site:
www.livewarepub.com. R&R is sold throughout the world and has an estimated
500,000 users within tens of thousands of businesses, governments, non-profit
organizations and educational institutions. R&R ReportWorks has a retail price
of $600, covering Report Designer modules for xBase and SQL reports,
Runtime engines and other utility modules. (Price at publication.)

Existing reports may be retrofitted to adapt Dynamic ParameteRRs,
making the value of upgrading to the latest R&R version highly
advantageous and worthwhile. For new report development, particularly
within software applications, the savings in time and effort in designing a
lead-in screen to gather variables could well be substantial. All existing
methods of passing variables to R&R Runtime remain unchanged, including
the RIPARAM() function and other ParameteRR categories.

In future R&R releases, we plan to add other functionality in this
area, including the ability of an end-user to select multiple values from lists
for both Static and Dynamic ParameteRRs.

Our technical support and consulting staff stand ready to assist
anyone wishing to implement Dynamic ParameteRRs and is looking for
advice.

