
Web-Based Reporting
with R&R

a Liveware Publishing, Inc. White Paper

26 April 2001

Christian A. Strasser

CTO - Liveware Publishing, Inc.

Page 3

Introduction
R&R is an extremely versatile tool. Both the xBase and SQL versions of the product
provide a large number of ways to communicate database information. From licensing
and installing individual copies of the report designer to integrating the ActiveX
component into a custom application, the choices available are extremely robust and rich.

One of the biggest opportunities to appear in recent years, is reporting over the Internet.
There are many uses for this method of distribution. One is Electronic Statement
Presentation (ESP), a key feature provided by many organizations to their customers
which lets them login and display their specific account data through their browser.
Another is providing broad distribution of reports to a variety of people. Certain jobs,
uses and locations of people needing reports make it impractical for them to get access to
their reports in traditional ways. These people can take advantage of their Internet
browser and a connection to the Internet to access dynamic, parameterized reports from
wherever they are.

This White Paper will describe the requirements and the tools needed to prototype a web-
based reporting application using R&R as the engine to create the reports. Many topics
will be covered, including web-server configuration, web-page construction, cgi execution
and proper setup of the reports themselves to deliver the requested results.

Note that this paper will focus on a Windows-based approach to the problem on the
server. This is because R&R is a Windows application and will not run on other
platforms. This solution revolves around R&R sessions being controlled and executed as
a server-side application. Note however, that the database does not have to be a Windows
application (for the R&R SQL only), nor do the clients have to be Windows. This is
because ODBC calls can be made to UNIX systems, mainframes, Macintoshes, etc. And
because the results of the request to R&R are pure HTML, any browser on any operating
system can interpret the results.

Although a lot of information is presented here, don �t be intimidated. We have found
that an R&R-based web report server can be implemented with only a few days � worth of
effort. Most of the time spent will go into designing the front-end for the browser and in
building the reports.

Page 4

Overview
As noted above, there are several components to a web-based reporting solution which
must all work together to deliver the result. These are:

"� A front-end HTML page to allow selection of the desired report and to
specify the parameters to send into the report.

"� A properly-configured web server that has a directory for storing and
executing cgi scripts, a place to save the reports and the results and
appropriate rights to those areas. Any package will do. Typically , most
Windows NT networks will use Microsoft �s IIS. This paper will show
the configuration for Microsoft �s Personal Web Server product which
comes bundled with Windows98. Undoubtedly, other web servers will
work and will probably be quite similar in practice.

"� An executable program stored on the web server which is responsible for
1) accepting the input from the web page, 2) parsing the input stream
into its component pieces (i.e. individual parameters and the report being
requested), 3) defining the right property settings in the R&R ActiveX
control, 4) executing the report and 5) feeding the HTML output file
back to the requestor. This program is known as the � CGI Script. �
Typically, it will be written in Visual Basic or Visual C. Both of these
languages produces relatively lightweight code for rapidly executing a
server-side process. Code for this is shown in Appendix 2.

"� The R&R ActiveX runtime control (either or both of the xBase and SQL
controls). This requires that a copy of R&R be installed on each server
that will be responsible for feeding reports back to requesters. This
ensures that the proper DLLs and Registry settings are copied to and
made on the server.

"� The set of R&R reports that will be executed to provide the information
back to the person requesting the report. These reports can be either
.RRWs or .RSWs, and must be defined with the appropriate RIPARAM
calculated fields to accept parameters from the input source.

"� Accessible data from the server �s point of view. That is, the client does
not have to be able to directly access the data used in the report, but the
server does. This can be accomplished by having an ODBC connection
with the proper information defined on the server (SQL), or having the
specific .dbf files visible and mapped somehow from the server (xBase).

In brief, the process is this: the client �s browser accesses a web-page which contains a
means to select a report and provide parameters into the report to control the output or
query in some fashion. When the � submit � button is pressed, it instructs the web server
to execute a named CGI script program which parses the input stream passed to it by the
web-page. The R&R ActiveX Component is part of this CGI, and based on the report
passed and the parameters parsed, is executed with the appropriate properties set.

Page 5

<HTML>

<HEAD>

<TITLE>Sample VB CGI</TITLE>

</HEAD>

<BODY>

<H3>CBM Web Reporting Demo</H3>

<P></P>

<P></P>

<FO RM action="htt p://k lingon/cg i-bin/cgi-bin /rr_cg i.exe" method="po st">

Select an R&R report to run:

<SELECT N AME="report">

<OPTION VALUE="users" selected>Users of BuzzPower</OPTION>

<OPTION VALUE="lag">Posting Lag Time</OPTION>

<OPTION VALUE="cbm01">CBM Test Report 1</OPTION>

<OPTION VALUE="cbm02">CBM Sales Report</OPTION>

</SELECT>

<P></P>Enter your user ID:

<INPUT id=logid name=userid>

<P></P>Enter the start date:

<INPUT id=begdate name=begdte>

<P></P>Enter the end date:

<INPUT id=enddate name=enddte>

<P></P><P></P>

<INP UT T YPE= "submit" VA LUE="Run Report">

</FORM>

</BODY>

</HTML>

HTML
The purpose of the HTML page or pages is to accept the input for the report and allow
parameters to be collected and passed to the server. This becomes the user interface to the
reporting application. Thus, the developer has to decide the appropriate controls to pick
the report and define the parameters that make sense for the particular report selected.
This could be a simple one-page combo-box and a few input boxes as shown in the
example here, or as complex as a set of linked pages, each of which allows a different set
of parameters along with graphics, instructions, etc.

The � action � section of the page defines the name of the program and where it is stored
that will be executed when the �Run Report � button is pressed. In this case, The
program is called rr_cgi.exe and it is stored in the cgi-bin section of the web server. The
rr_cgi.exe program will be explained in its own section of this white paper.

Page 6

The various reports available for this simple example are enumerated in the � select �
portion of the web-page. In this case, each is explicitly listed for selection within a drop-
down combo box. The � value � item specifies the name of the report that will be
submitted to the rr_cgi.exe program, while the text following it describes the report name
that is visible to the
person browsing the
page. Thus, if one
picks the report shown
as � CBM Test Report
1, � the submission
action will pass
 � cbm01 � as part of
the input stream to the
rr_cgi.exe program

As shown in the screen
shot at right, the user
may submit additional
information besides
the specific report to
run. This example
included a user-id for
validation and
restriction of the
results available from
the database as well as
start and end dates to
allow reporting over specific, arbitrary periods (month, year, quarter, etc.).

These three additional values will be passed to the rr_cgi.exe program as the parameters
 � userid, � � begdte, � and � enddte. �

As indicated above, one can easily imagine more extensive and automatic means of
selecting reports for execution. The names of reports could be stored in a database that
the web-page queries and displays dynamically as reports are added/deleted. The
parameters as well could be variable depending on the specific report in question. The
user could also be directed to a variety of web pages via hot links that would explain the
report and the various parameters available. On this example, the page was stored as a
standalone within a browsable list on the home page.

Page 7

Web Server

The sample application shown here has been setup using Microsoft �s Personal Web Server
(PWS) under Windows98(tm). We have also configured a similar application on IIS
running under Windows NT(tm) as well. All configuration information will be presented
in the context of PWS. A full treatment and description of PWS is beyond the scope of
this white paper.

Run PWS by selecting Start|Programs|Accessories|Internet Tools|Personal Web

Server|Personal Web Manager. Note that unless you have added this component to your
Windows98 system, it will not be available on this path.

PWS must be started to enable serving of web pages to a client. On the � Main � tab, click
on the � Start � button.

Certain settings to enable CGI execution and placement of the basic information needed
for the system should also be configured at this time.

Advanced Options - Home
In the example given at right, the default document is the one shown in the HTML
section above. In a live application, the default document would be your home page and
one of the links
would eventually
lead down to the
report selection page.
The document
shown here is stored
in the <Home>
directory.

Advanced Options-
Scripts
To execute the CGI
referenced in
rr_cgi.htm, a /cgi-
bin folder must be
created under the
<Home> folder (if
it doesn �t already).
Click � Add � and define the popup dialog as shown below. You need to define a � real �
directory as well as a � virtual � directory (alias) for this section of your website. The cgi-
bin folder must be tagged with all three � Access � options as shown at left to ensure that
the program can be executed.

Page 8

Advanced Options- Reports
Other folders must be created as well to ensure that the application will work. A
 � reports � virtual directory must be setup with at least � read � access. This folder is the
place where your RRW files will be stored for access by the CGI. Beneath the � real �
reports folder on your server system, you must define a folder to store the HTML files

that will be generated by the CGI and
served back to the client. In this
example, the actual folder name on the
server is:
c:\inetpub\wwwroot\rr-

repts\temphtmls. This folder is
referenced within the VB program
stored in the cgi-bin folder. It doesn �t
have to be a virtual web folder because
it never gets accessed directly from a

web client. However, there is no reason why a structure couldn �t be created wherein
individual clients � output could be stored and accessed for future retrieval. Security and
timeliness of the data becomes a consideration at tthat point. Additionally, depending on
volume, this folder could become very full and require maintenance to delete old .htm
files.

Page 9

Option Explicit

Sub Command1_Click()
 RSReport1.RunReport (1) ' Run synchronously
End Sub

Private Sub Form_Load()

End Sub

Visual Basic Program
The key piece that ties all the components together is a relatively simple Visual Basic
program that sits on the server and waits for a report request to come to it from the
client �s browser. This program incorporates the R&R ActiveX control to gather the
parameters submitted from the web and pass them onto the reports that are executed on
the server against the internal database.

The VB6 program requires some special variables and definitions that are needed to
communicate with IIS and a the client. Microsoft �s website offers a variety of useful
technical documents to enable CGI execution. Our example relies heavily on
KnowledgeBase Article Q239588. In it, the necessary initialization components for a VB
CGI executable are defined. For convenience, the salient contents of this article are
reprinted here with additional information needed for R&R (see next page).

Once the header information has been defined, the real work of the CGI can be done.
Note that the project must be created by dropping the appropriate R&R ActiveX control
onto a form in a VB project. A typical form is shown at right. The yellow icon is the
R&R SQL ActiveX control and
is named RSReport1, while the
other icon is for xBase reports
and named RRReport1.

The button is presented only as a
place-holder for execution. It
never actually gets � clicked � but
is used in testing. This raises an
important point: Obviously, on a server, no user input is possible. If any user-input
dialog was displayed on the server, the client would perceive the application as � hung �
because no action could be taken until someone at the server site refreshed the screen and
closed the dialog.

The code attached to the Command1 button is shown at left. The only line that is
necessary is the method to actually invoke the
control. The example at left runs the SQL
version. To execute the xBase, replace
RSReport1.RunReport(1) with
RRReport1.RunReport(1).

Page 10

Attribute VB_Name = "cgiMain"
' *****************
' * R&R via CGI *
' *****************
' Note: Set the VB project options to use Sub Main as the startup form.
'
' Author: Colin Strasser
' September 8, 2000
'
' Based on code from Microsoft KnowledgeBase Article Q239588.
'--

Option Explicit

Public Const STD_INPUT_HANDLE = -10&
Public Const STD_OUTPUT_HANDLE = -11&

Public Const CGI_AUTH_TYPE As String = "AUTH_TYPE"
Public Const CGI_CONTENT_LENGTH As String = "CONTENT_LENGTH"
Public Const CGI_CONTENT_TYPE As String = "CONTENT_TYPE"
Public Const CGI_GATEWAY_INTERFACE As String = "GATEWAY_INTERFACE"
Public Const CGI_HTTP_ACCEPT As String = "HTTP_ACCEPT"
Public Const CGI_HTTP_REFERER As String = "HTTP_REFERER"
Public Const CGI_HTTP_USER_AGENT As String = "HTTP_USER_AGENT"
Public Const CGI_PATH_INFO As String = "PATH_INFO"
Public Const CGI_PATH_TRANSLATED As String = "PATH_TRANSLATED"
Public Const CGI_QUERY_STRING As String = "QUERY_STRING"
Public Const CGI_REMOTE_ADDR As String = "REMOTE_ADDR"
Public Const CGI_REMOTE_HOST As String = "REMOTE_HOST"
Public Const CGI_REMOTE_USER As String = "REMOTE_USER"
Public Const CGI_REQUEST_METHOD As String = "REQUEST_METHOD"
Public Const CGI_SCRIPT_NAME As String = "SCRIPT_NAME"
Public Const CGI_SERVER_NAME As String = "SERVER_NAME"
Public Const CGI_SERVER_PORT As String = "SERVER_PORT"
Public Const CGI_SERVER_PROTOCOL As String = "SERVER_PROTOCOL"
Public Const CGI_SERVER_SOFTWARE As String = "SERVER_SOFTWARE"

Public Declare Function Sleep Lib "kernel32" _
(ByVal dwMilliseconds As Long) As Long

Public Declare Function stdin Lib "kernel32" Alias "GetStdHandle" _
(Optional ByVal Handletype As Long = STD_INPUT_HANDLE) As Long

Public Declare Function stdout Lib "kernel32" Alias "GetStdHandle" _
(Optional ByVal Handletype As Long = STD_OUTPUT_HANDLE) As Long

Public Declare Function ReadFile Lib "kernel32" _
(ByVal hFile As Long, ByVal lpBuffer As Any, ByVal nNumberOfBytesToRead As Long, _
lpNumberOfBytesRead As Long, Optional ByVal lpOverlapped As Long = 0&) As Long

Public Declare Function WriteFile Lib "kernel32" _
(ByVal hFile As Long, ByVal lpBuffer As Any, ByVal nNumberOfBytesToWrite As Long, _
lpNumberOfBytesWritten As Long, Optional ByVal lpOverlapped As Long = 0&) As Long

The next section of the program defines the main() module. This contains the
initialization required to setup all the variables needed for the program to properly
communicate with the webserver and through to R&R. Each of the important variables
used in the program will be described below. Also shown here is the sample input stream
typical of what would be sent to the program from the webpage shown above

sReadBuffer = "report=cbm01&userid=bearman&begdte=07%2F01%2F2001&enddte=07%2F31%2F2001"

Page 11

Sub Main()
 Dim sReadBuffer As String
 Dim sWriteBuffer As String
 Dim lBytesRead As Long
 Dim lBytesWritten As Long
 Dim hStdIn As Long
 Dim hStdOut As Long

 Dim iPos1 As Integer
 Dim iPos2 As Integer
 Dim iPos3 As Integer
 Dim iPos4 As Integer

 Dim iAmp1 As Integer
 Dim iAmp2 As Integer
 Dim iAmp3 As Integer
 Dim iAmp4 As Integer

 Dim sArgName As String
 Dim sArgValue As String

 Dim sReportToRun As String
 Dim sUserID As String
 Dim sBegDte As String
 Dim sEndDte As String

 Dim iLP1 As Integer
 Dim iLP2 As Integer
 Dim iLP3 As Integer
 Dim iLP4 As Integer

 Dim sPm1 As String
 Dim sPm2 As String
 Dim sPm3 As String

 Const sReportPath = "C:\inetpub\wwwroot\rr-repts\"
 Const sTempPath = "c:\inetpub\wwwroot\rr-repts\TempHTMLs\"
 Const sParm1 = "report="
 Const sParm2 = "userid="
 Const sParm3 = "begdte="
 Const sParm4 = "enddte="

 Dim sFullOutputFileSpec As String
 Dim sOutputFileName As String

sReadBuffer

String variable that holds the

input stream submitted from

the parameters webpage

shown earlier.

sWriteBuffer

String variable that holds the

specially formatted text that

is sent back out to the

webserver after successful

execution of the repo rt

lBytesRead

Logical variable to indica te

whether any data was

transmitted from the client �s

browser

lBytesWritten

Logical variable that indicates

whether any data was sent

back to the browser

hStdIn

Specia l file han dle varia ble

used to enable reading from

the co nsole

hStdOut

Specia l file han dle varia ble

used to enable writing back

to the c onso le

iPos1 - iPos4

Integer variables needed to identify where the text stored in the various constant parameters (sParm1 -

sParm4) lie within the text submitted through sReadBuffer

iAmp1 - iAmp4

The individ ual data elemen ts subm itted from the web browse r are sepa rated by a mpers and � & � charac ters.

These are intege r variables used to ind icate the position of the ampersa nds in the sR eadBuffer text. The data

associated with each parameter begins immediately following the �= � sign and extends to just before the

ampersand

iLP1 - iLP4

Intege r variab les tha t hold th e total le ngth o f each of the fo ur para mete r cons tants identifie d abo ve. The se will

be used to cull the name of the variable represented by each of the parameters (without the �= � sign)

sArgName

Temporary string variable needed to hold the name of the argument associated with each parameter (i.e.

Page 12

iPos2 = InStr(sReadBuffer, sParm2)
iAmp2 = InStr(iAmp1 + 1, sReadBuffer, "&")
sArgName = Left$(sReadBuffer, iLP2 - 1)
sArgValue = Mid$(sReadBuffer, iPos2 + iLP2, (iAmp2 - (iLP2 + iPos2)))
sUserID = Trim(sArgValue)

sFullOutputFileSpec = sTempPath & sUserID & ".HTM"

 � report= � in sParm1 will be stored in sArgN ame as � report �

sArgValue

Temporary string variable needed to hold the value submitted for each individual element submitted through

the webserver textstream. Referring to the sample input stream above, the value associated with the name

 � report � is � lag �

sReportToR un, sUserID, sB egDte, sEnd Dte

Each of these variables is specifically defined to be associated with one of the four values submitted through

the input stream. This is important to note: All examples shown here are extremely hard-coded to expect four

values to be submitted from the webserver with no variation as to name, order or type. Reports that had

different requirements (i.e. different types of variables, more variables, etc.) would have to be accounted for by

e n s u r i n g th a t e v e r y c i r c u m s t a n c e o r s i t u a t io n o f v a r ia b l e s w a s h a n d l e d . L i v e w a r e is d e v e l o p in g a u t i li t y t h a t

simplifies this definition and administration on the server side.

sReportPath , sTempPa th

These a re consta nts that p oint to the p hysical direc tories on th e server w here the re ports are s tored an d where

the HTML output generated by R&R will be stored. These should correspond exactly to the pathnames

described in the WebSe rver section of this docu ment.

sFullOutputFileSpec

String variable used to indicate the entire path and filename where the temporary HTML export will be stored.

sOutputFileName

Option al string used to force all outp ut to a s ingle filen ame . This isn �t recom men ded if a ny volum e at all is

expected on the website, since output would soon become confused and overwritten. Instead, a f ilename

composed of the UserID (submitted in the input stream) appended with � .HTM � is a better choice, since each

user will likely only be submitting and reviewing one report at a time.

sPm1 - sPm3

These are string variables that will correspond one-for-one with the values defined within the report in RIPARAM

functions. The will consist of the character string defined in each RIPARAM followed by �= � and then the value

submitted and parsed in the input stream (sUserID, sBegDte, sEndDte)

The Code

This section begins to detail the actual mechanics of the VB6 program. Each major
section will be taken step-by-step and its function explained. Some pieces will have little
meaning without a solid understanding of the report specification being accessed. This
will be addressed in the next section. A complete listing of the program is provided in the
appendix at the end of this paper.

As noted in the variable
definitions above, the
input stream from the web
client must be evaluated
and parsed for the
individual variables being
transmitted. The code

Page 13

 If sReportToRun = "cbm01" Then
 sPm1 = "USERNAME=" & sUserID
 sPm2 = "BEGDATE=" & sBegDte
 sPm3 = "ENDDATE=" & sEndDte
 Form1.RSReport1.ReportName = sReportPath & "CBM-Test01.RSW"
 Form1.RSReport1.DataSource = "Vision"
 Form1.RSReport1.Username = "pwills"
 Form1.RSReport1.Password = "password"
 Form1.RSReport1.Parameters(0) = sPm1
 Form1.RSReport1.Parameters(1) = sPm2
 Form1.RSReport1.Parameters(2) = sPm3
 End If

Form1.RSReport1.CopiesToPrinter = 0
Form1.RSReport1.Destination = 13 ' HTML
Form1.RSReport1.ExportDestination = 2 ' File
Form1.RSReport1.PrintFileName = sFullOutputFileSpec

shown here is a typical fragment to do that.

The first action is to identify the position that the � userid= � item is located within the
input stream (stored in constant sParm2) as well as the position of the second ampersand
character. The first two lines of the fragment above accomplish this task. Once these
locations are known, the program must extract the actual value from the stream that is
associated with the element. This is done in the � sArgValue = � line. The data value is
found via a complex set of calculations that define the start and end points of the value
and � fence it in. � Once identified, the value is stored into its specifically assigned variable
(sUserID in this case) and can be used in other areas (as shown here to help create the
temporary filename needed to store the HTML output).

Once all the variables are populated, the program takes that information and passes them
to the R&R ActiveX control. One of these is needed for each report that can be executed

from the client as defined
on the web page shown
previously. As described
above, the sPmx variables
are used to define the
communication with the
RIPARAM functions
defined within the RRW
file. In the code fragment
here, the report definition
has three RIPARAM

functions to handle the username, beginning date and ending date for the report. The
form defined in the VB program has been named generically as � Form1" although it
could be anything that had more meaning.

As described above, the R&R ActiveX control is called either RSReport1 or RRReport1.
In the example here, the control is for the SQL version of the program. The reports used
in these examples were developed against a Microsoft SQL Server(tm) database and the
ODBC datasource defined as �Vision. � This database also required a master userid and
password, both of which were defined and passed to the report within the program.

The ReportName parameter passed to the control must exactly match one of the report
files stored in the reports folder on the server. Finally, the ActiveX control can accept up
to six parameters for a given
report. This should be
enough for most situations.
In the event that more are
needed, each parameter can be
 � overloaded, � that is, created
with two or more pieces of data that are parsed from within the report itself. In the

Page 14

 ' Construct and send response to the browser
 ' NB: We aren't doing enough error checking (we assume the
 ' report completed successfully
 sWriteBuffer = "HTTP/1.0 200 OK" & vbCrLf & "Content-Type: text/html" & _
 vbCrLf & vbCrLf

 hStdOut = stdout()
 WriteFile hStdOut, sWriteBuffer, Len(sWriteBuffer) + 1, lBytesWritten

 Form1.RSReport1.RunReport (1) ' Run synchronously

 ' Output the report itself to the browser
 Dim c As String

 Open sFullOutputFileSpec For Input As #1
 Do While Not EOF(1)
 c = Input(1, #1) ' Get one character.
 WriteFile hStdOut, c, 1, lBytesWritten
 Loop
 Close #1
 End
End Sub

fragment shown, three parameters are passed into the control. Note that parameters are
numbered from 0 through 5.

The remaining actions needed with the ActiveX control focus on defining the output
destination and type. In the example shown here, the output will be sent to an HTML
(Destination = 13) file (ExportDestination = 2) with filename defined as the temporary
folder to store the output (PrintFileName = sFullOutputFileSpec). To be safe, the
control sets the CopiesToPrinter to 0.

The last section of the program formats the HTTP stream for return back to the web
client. The first set of text placed back into the sWriteBuffer variable ensures that the
output will be interpreted as successful, valid HTML content for viewing within the
browser. The most important part of the program is specified here: The call to
RunReport(1) sets everything in motion. It opens the connection to the database, passes
the login information & the parameters and finally exports the HTML output to the
filename provided. The remaining code simply opens the channel back to the client and
writes the data from the process one byte at a time.

One final note regarding the choice of programming language: The sample shown here
uses Visual Basic 6 to communicate with the server and IIS. Microsoft has made it
relatively simple to press VB6 into this sort of role. However, other programming
languages can be used to the same effect with differing degrees of difficulty. For example,
by taking advantage of FoxISAPI (bundled with Microsoft �s Visual FoxPro), VFP can be
used in the CGI role. Additionally, C++, Delphi(tm) and any other Windows
application development system able to support ActiveX controls and communicate with
IIS will probably work. We leave it to individual developers to determine the most
effective way to implement this capability in their most comfortable language /
environment.

Page 15

R&R Report

The R&R Report, � CBM-Test01.RSW, � is a simple report designed specifically to
highlight the interaction between it and the VB6 CGI program. Both must reside on the
same network and have access to the datasource defined and passed into the control. The
main designer screen is shown here.

Within the report, are three calculated
fields, defining the RIPARAM
elements needed to execute the report
for the appropriate timeframe and for
the proper user. One of these are
shown here at the right. The other two
define RIPARAM calculated fields for
the ending date and the userid (see
report specification in the appendix).
Also note that each of the RIPARAM
functions are natively stored and
defined as text. A conversion to the
appropriate data type is required before
use.

In this example, the final step in the definition is the filter. Each of the calculations plays a
role in controlling the output transferred back to the web client.

Page 16

Also, not readily apparent in this example, but of potentially crucial importance are the
formatting choices made for the report. Such considerations as lines, graphics, fonts,
wrapping text, columns, etc. will make a big difference in how well laid-out the resulting
HTML output looks.

In general, pay attention to the following issues:
What we've concluded is that the complexity of the report matters a great deal. Relatively

sparse reports with little in the way of extensive columns, fancy fonts, graphics and the
like come out much better. When we �ve tried to use HTML with graphics and formatting
intensive reports we thought the HTML output looked terrible.

Also, the choice of fonts seems to matter. Try to pick fonts that are fairly common and
can be expected to be on most PCs (Times, Arial, Lucida, Tahoma).

Finally, don't attempt to mix word-wrapped text and single-field items on the same lines.
For graphics, put the image on a single large free-form band and anchor it slightly above
any text that is adjacent to it. Keep grouping bands and page resets to a minimum as
well.

Page 17

Conclusion

This paper has attempted to lay out the various componen ts needed to implement an
R&R based reporting solution over the web. The benefits of this include more
widespread and easier access to reporting and the data stored in corporate systems.
Reporting over the web opens up formerly insular data systems to customers, employees,
suppliers, brokers, and more. The perception of higher value delivered to these
constituents can enhance the overall relationship.

Probably the most important thing to take from this paper is the knowledge that R&R is
capable of solving nearly every reporting problem you, your customers or your developers
have. There are many other capabilities lurking beneath the surface waiting to be tapped.
Talk to us about your most problematic reports. We �re confident that R&R will deliver
the results.

Liveware is available to assist in the creation and deployment of these systems where
internal resources are not sufficient to implement them. As mentioned at the beginning of
this paper, a web-based reporting system built on R&R can be developed and deployed in
a matter of days. Visit our website at www.livewarepub.com or call us at (800) 936-6202

to learn more.

Page 18

Appendix - Visual Basic Source Code

Attribute VB_Name = "cgiMain"

' *****************

' * R&R via CGI *

' *****************

' Note: Set the VB project options to use Sub Main as the startup form.

'

' Author: Colin Strasser

' September 8, 2000

'

' Based on code from Microsoft KnowledgeBase Article Q239588.

'--

Option Explicit

Public Const STD_INPUT_HANDLE = -10&

Public Const STD_OUTPUT_HANDLE = -11&

Public Const CGI_AUTH_TYPE As String = "AUTH_TYPE"

Public Const CGI_CONTENT_LENGTH As String = "CONTENT_LENGTH"

Public Const CGI_CONTENT_TYPE As String = "CONTENT_TYPE"

Public Const CGI_GATEWAY_INTERFACE As String = "GATEWAY_INTERFACE"

Public Const CGI_HTTP_ACCEPT As String = "HTTP_ACCEPT"

Public Const CGI_HTTP_REFERER As String = "HTTP_REFERER"

Public Const CGI_HTTP_USER_AGENT As String = "HTTP_USER_AGENT"

Public Const CGI_PATH_INFO As String = "PATH_INFO"

Public Const CGI_PATH_TRANSLATED As String = "PATH_TRANSLATED"

Public Const CGI_QUERY_STRING As String = "QUERY_STRING"

Public Const CGI_REMOTE_ADDR As String = "REMOTE_ADDR"

Public Const CGI_REMOTE_HOST As String = "REMOTE_HOST"

Public Const CGI_REMOTE_USER As String = "REMOTE_USER"

Public Const CGI_REQUEST_METHOD As String = "REQUEST_METHOD"

Public Const CGI_SCRIPT_NAME As String = "SCRIPT_NAME"

Public Const CGI_SERVER_NAME As String = "SERVER_NAME"

Public Const CGI_SERVER_PORT As String = "SERVER_PORT"

Public Const CGI_SERVER_PROTOCOL As String = "SERVER_PROTOCOL"

Public Const CGI_SERVER_SOFTWARE As String = "SERVER_SOFTWARE"

Public Declare Function Sleep Lib "kernel32" _

(ByVal dwMilliseconds As Long) As Long

Public Declare Function stdin Lib "kernel32" Alias "GetStdHandle" _

(Optional ByVal Handletype As Long = STD_INPUT_HANDLE) As Long

Public Declare Function stdout Lib "kernel32" Alias "GetStdHandle" _

(Optional ByVal Handletype As Long = STD_OUTPUT_HANDLE) As Long

Public Declare Function ReadFile Lib "kernel32" _

(ByVal hFile As Long, ByVal lpBuffer As Any, ByVal nNumberOfBytesToRead As Long, _

lpNumberOfBytesRead As Long, Optional ByVal lpOverlapped As Long = 0&) As Long

Public Declare Function WriteFile Lib "kernel32" _

(ByVal hFile As Long, ByVal lpBuffer As Any, ByVal nNumberOfBytesToWrite As Long, _

lpNumberOfBytesWritten As Long, Optional ByVal lpOverlapped As Long = 0&) As Long

Page 19

Sub Main()

 Dim sReadBuffer As String

 Dim sWriteBuffer As String

 Dim lBytesRead As Long

 Dim lBytesWritten As Long

 Dim hStdIn As Long

 Dim hStdOut As Long

 Dim iPos1 As Integer

 Dim iPos2 As Integer

 Dim iPos3 As Integer

 Dim iPos4 As Integer

 Dim sArgName As String

 Dim sArgValue As String

 Dim sReportToRun As String

 Dim sUserID As String

 Dim sBegDte As String

 Dim sEndDte As String

 Dim sFullOutputFileSpec As String

 Dim sOutputFileName As String

 Dim iAmp1 As Integer

 Dim iAmp2 As Integer

 Dim iAmp3 As Integer

 Dim iAmp4 As Integer

 Dim iLP1 As Integer

 Dim iLP2 As Integer

 Dim iLP3 As Integer

 Dim iLP4 As Integer

 Dim sPm1 As String

 Dim sPm2 As String

 Dim sPm3 As String

 Const sReportPath = "C:\inetpub\wwwroot\rr-repts\"

 Const sTempPath = "c:\inetpub\wwwroot\rr-repts\TempHTMLs\"

 Const sParm1 = "report="

 Const sParm2 = "userid="

 Const sParm3 = "begdte="

 Const sParm4 = "enddte="

 iLP1 = Len(sParm1)

 iLP2 = Len(sParm2)

 iLP3 = Len(sParm3)

 iLP4 = Len(sParm4)

 sFullOutputFileSpec = sReportPath & sOutputFileName

 If Len(Environ$(CGI_CONTENT_LENGTH)) > 0 Then

 sReadBuffer = String$(CLng(Environ$(CGI_CONTENT_LENGTH)), 0)

 End If

Page 20

 ' Get STDIN handle. The CGI protocol calls for reading GET request data

 ' through Stdin and writing output to Stdout.

 hStdIn = stdin()

 ' Read what the user's browser passed as input

 ReadFile hStdIn, sReadBuffer, Len(sReadBuffer), lBytesRead

 ' Find '=' in the name/value pair and parse the user's input into separate fields.

 ' In this example, there is only a single field and so we assume it's the one that

 ' specifies which of several possible .RSW files to use.

 iPos1 = InStr(sReadBuffer, sParm1)

 iAmp1 = InStr(sReadBuffer, "&")

 sArgName = Left$(sReadBuffer, iLP1 - 1)

 sArgValue = Mid$(sReadBuffer, iPos1 + iLP1, (iAmp1 - iLP1) - 1)

 sReportToRun = Trim(sArgValue)

 iPos2 = InStr(sReadBuffer, "userid=")

 iAmp2 = InStr(iAmp1 + 1, sReadBuffer, "&")

 sArgName = Left$(sReadBuffer, iLP2 - 1)

 sArgValue = Mid$(sReadBuffer, iPos2 + iLP2, (iAmp2 - (iLP2 + iPos2)))

 sUserID = Trim(sArgValue)

 sFullOutputFileSpec = sTempPath & sUserID & ".HTM"

 iPos3 = InStr(sReadBuffer, "begdte=")

 iAmp3 = InStr(iAmp2 + 1, sReadBuffer, "&")

 sArgName = Left$(sReadBuffer, iLP3 - 1)

 sArgValue = Mid$(sReadBuffer, iPos3 + iLP3, (iAmp3 - (iLP3 + iPos3)))

 sBegDte = Trim(Replace(sArgValue, "%2F", "/", 1, 2))

 iPos4 = InStr(sReadBuffer, "enddte=")

 iAmp4 = Len(sReadBuffer)

 sArgName = Left$(sReadBuffer, iLP4 - 1)

 sArgValue = Mid$(sReadBuffer, iPos4 + iLP4, (iAmp4 - (iLP4 + iPos4) + 1))

 sEndDte = Trim(Replace(sArgValue, "%2F", "/", 1, 2))

 If sUserID = "" Then

 sUserID = "YXATBS-99"

 End If

 If sBegDte = "" Then

 sBegDte = "01/01/" + Str(Year(Date))

 End If

 If sEndDte = "" Then

 sEndDte = "12/31/" + Str(Year(Date))

 End If

 If sReportToRun = "users" Then

 Form1.RSReport1.ReportName = sReportPath & "sample.RSW"

 Form1.RSReport1.DataSource = "Sample Access DB"

 End If

 If sReportToRun = "lag" Then

 sPm1 = "USERNAME=" & sUserID

 sPm2 = "BEGDATE=" & sBegDte

 sPm3 = "ENDDATE=" & sEndDte

Page 21

 Form1.RSReport1.ReportName = sReportPath & "TimeLag.RSW"

 Form1.RSReport1.DataSource = "Sample Access DB"

 Form1.RSReport1.Parameters(0) = sPm1

 Form1.RSReport1.Parameters(1) = sPm2

 Form1.RSReport1.Parameters(2) = sPm3

 End If

 If sReportToRun = "cbm01" Then

 sPm1 = "USERNAME=" & sUserID

 sPm2 = "BEGDATE=" & sBegDte

 sPm3 = "ENDDATE=" & sEndDte

 Form1.RSReport1.ReportName = sReportPath & "CBM-Test01.RSW"

 Form1.RSReport1.DataSource = "Vision"

 Form1.RSReport1.Username = "pwills"

 Form1.RSReport1.Password = "password"

 Form1.RSReport1.Parameters(0) = sPm1

 Form1.RSReport1.Parameters(1) = sPm2

 Form1.RSReport1.Parameters(2) = sPm3

 End If

 If sReportToRun = "cbm02" Then

 sPm1 = "USERNAME=" & sUserID

 sPm2 = "BEGDATE=" & sBegDte

 sPm3 = "ENDDATE=" & sEndDte

 Form1.RSReport1.ReportName = sReportPath & "SalesReport.RSW"

 Form1.RSReport1.DataSource = "Vision"

 Form1.RSReport1.Username = "pwills"

 Form1.RSReport1.Password = "password"

 Form1.RSReport1.Parameters(0) = sPm1

 Form1.RSReport1.Parameters(1) = sPm2

 Form1.RSReport1.Parameters(2) = sPm3

 End If

 Form1.RSReport1.CopiesToPrinter = 0

 Form1.RSReport1.Destination = 13 ' HTML

 Form1.RSReport1.ExportDestination = 2 ' File

 Form1.RSReport1.PrintFileName = sFullOutputFileSpec

 ' Construct and send response to the browser

 ' NB: We aren't doing enough error checking (we assume the

 ' report completed successfully

 sWriteBuffer = "HTTP/1.0 200 OK" & vbCrLf & "Content-Type: text/html" & _

 vbCrLf & vbCrLf

 hStdOut = stdout()

 WriteFile hStdOut, sWriteBuffer, Len(sWriteBuffer) + 1, lBytesWritten

 Form1.RSReport1.RunReport (1) ' Run synchronously

 ' Output the report itself to the browser

 Dim c As String

 Open sFullOutputFileSpec For Input As #1

 Do While Not EOF(1)

 c = Input(1, #1) ' Get one character.

 WriteFile hStdOut, c, 1, lBytesWritten

Page 22

 Loop

 Close #1

 End

End Sub

Page 23

Appendix - Sample Report Specification

 R&R SQL Report Designer

 Version: 2.0 U00 Build: 8.1.25

 Win32 on Windows 95 (4.10)

 A

 Date: 04/25/2001 Time: 21:07

 Report Name: C:\Inetpub\wwwroot\rr-repts\CBM-Test01.RSW

 Date: 04/25/2001 Time: 20:58:38

 Report Version: 8.01

 SELECT STATEMENT

 select

 `UniqEntity ,̀ `EmpAgcyClaimRepFlag`, `EmpCsrFlag`,

 `EmpAcctRepFlag`, `EmpAcctExecFlag`, `EmpHiredDate`,

 `EmpYrSalary`, `UniqCdEmpInOutReason`

 from

 Employee

 FORMAT INFORMATION

 Print Options

 Current printer: Generic / Text Only on FILE: (WINSPOOL.DRV)

 Number of report copies: 1

 Starting page number: 1

 Ending page number: 65535

 Print to File: c:\inetpub\wwwroot\spec.txt

 Collate copies: Yes

 Page Setup

 Page length: Letter 8 1/2 x 11 in

 Top margin: 0.50 inches

 Bottom margin: 0.50 inches

 Left margin: 0.50 inches

 Right margin: 0.50 inches

 Page orientation: Portrait

 Interline spacing: Yes

 Horizontal ruler spacing: 10

 Vertical ruler spacing: 10

 Record Layout

 Compress record/group lines? Yes

 Suppress record lines? No

 Headers/footers in summary? Yes

 Break record area? No

 Label type:

 Record order: Across

 Records across: 1

 Columns across: 1

 Record width: 3.00 inches

Page 24

 Record height: 0.00 inches

 Record copies: 1

 DATABASE INFORMATION

 Data Source: Vision

 DS Driver: ODBCJT32.DLL

 DS Driver DBMS: ACCESS Version: 04.00.0000

 Master Table: Employee

 (Alias: Employe)

 FILTER INFORMATION

 Include all records where EmpHiredDate is greater than or equal to

 BeginDate and EmpHiredDate is less than or equal to EndDate and

 UseIDChk is equal to 'bearman'

 FIELD INFORMATION

 Band Line Pos:In Width Field Type Format Font Att Trm Clr

 ------ --- ----- -------- -------------------- - ----------- --- ---- - -----

 Page H 1 0.00 19 Chr CBM - Test Report 1 T Left 1 B N Black

 Page H 2 ------------------- Blank Line --------------------

 Page H 3 ------------------- Blank Line --------------------

 Page H 4 ------------------- Blank Line --------------------

 Page H 5 ------------------- Blank Line --------------------

 Record 6 0.00 21 Chr Employe.EmpHiredDate D mm/dd/yyyy h:mm:ss am 1 N

 Record 6 1.90 10 Chr Employe.UniqEntity N Fixed 1 N Black

 Record 6 3.40 6 Chr Employe.EmpCsrFlag N Fixed 1 N Black

 Record 6 4.00 6 Chr Employe.EmpAcctRepFl N Fixed 1 N Black

 Record 6 4.60 6 Chr Employe.EmpAcctExecF N Fixed 1 N Black

 Record 6 5.20 6 Chr Employe.EmpAgcyClaim N Fixed 1 N Black

 Record 6 5.80 6 Chr Employe.EmpYrSalary N Fixed 1 N Black

 Record 6 6.80 6 Chr Employe.UniqCdEmpInO N Fixed 1 N Black

 Page F 7 ------------------- Blank Line --------------------

 Page F 8 2.60 21 Chr Repname_rr C Left 1 N Black

 Font Names

 1 Roman 10cpi 12.0

 9 Calculated and 0 Total Fields

 BeginDate (BeginDate) DateTime Calculated

 ctdt(RIParam("BEGDATE"))

 Date_rr (Date_rr) Date Calculated

 Today's date

 DATE()

 EndDate (EndDate) DateTime Calculated

 ctdt(RIParam("ENDDATE"))

 Page_rr (Page_rr) Numeric Calculated

 Page number

 PAGENO()

Page 25

 Query_rr (Query_rr) Character Calculated

 Current query expression

 QUERY()

 Recno_rr (Recno_rr) Numeric Calculated

 Report record number

 RECNO()

 Repname_rr(Repname_rr) Character Calculated

 Current report name

 REPNAME()

 Time_rr (Time_rr) Character Calculated

 Current time

 TIME()

 Translation: {fn CURTIME()}

 UseIDChk (UseIDChk) Character Calculated

 RIParam("USERNAME")

 FIELD DATA TYPES

 Field Rep type Database type

 -------------------- -------- -------------

 Employe.UniqEntity Num code 4

 Employe.EmpAgcyClaim Num code 4

 Employe.EmpCsrFlag Num code 4

 Employe.EmpAcctRepFl Num code 4

 Employe.EmpAcctExecF Num code 4

 Employe.EmpHiredDate DateTime code 8

 Employe.EmpYrSalary Num code 4

 Employe.UniqCdEmpInO Num code 4

 LINE INFORMATION

 Conditional Lines:

 None

 Line Height Overrides:

 None

 SORT/GROUP INFORMATION

 None

 REGIONAL SETTINGS

 Decimal point: DOT

 Thousands: COMMA

 Currency: _ (Prefix)

 Short Date: mm/dd/yyyy

 True: T

 False: F

