

ReportWorks
Version 12

Xbase Edition

Developing
Applications

COPYRIGHT

©2015 Liveware Publishing Inc.

All rights reserved.

Liveware Publishing Inc.

1506 Society Drive

Claymont, DE 19703

This manual is copyrighted and all rights are reserved. This

document may not, in whole or part, be copied, photocopied,

reproduced, translated, or reduced to any electronic medium or

machine readable form without the prior written consent of

Liveware Publishing Inc.

Printed in the United States of America

Trademarks and Acknowledgments

R&R Report Writer is a trademark of

Liveware Publishing Inc.

Portions of the imaging technology of this product are copyrighted by

Lead Technologies, Inc.

All Avery product code numbers are trademarks of the

Avery Dennison Corporation.

All other product names and logos in this manual are used for

identification purposes only and may be trademarks or registered

trademarks of their respective companies.

Chapter 1 Overview

Introduction (Overview)

This manual explains how to incorporate reports into your Windows applications,

whether you are using the Viewer or distributing reports for use in interactive
Report Designer. Using the Viewer, you can call reports from within an application
program just as you might call any other program module.

For example, you might develop an Order Entry application that calls the Viewer to

produce order forms, mailing labels, and invoices designed with Report Designer.
Users can then access these forms and reports from Windows or from a Windows
application without using interactive Report Designer.

Chapter 1: Overview

R&R ReportWorks Xbase Developing Applications Page 2

Organization of the Manual

Chapters 2, through 5 of this manual explain the methods for accessing the
Viewer:

� You can directly access the Viewer executable (RRWRUN.EXE) using a
control table or file. This method is explained in Chapter 2, "Using the Viewer

Executable."

� The Viewer DLL provides an Application Programming Interface (API) that is
suitable for use by any high-level programming language. See Chapter 3,

"Accessing the Viewer DLL," for details.

� The R&R ActiveX control (OCX) simplifies Viewer access for Visual Basic
applications. Chapter 4, "Using the ActiveX Control," explains this method.

� The R&R ASP interface DLL (RRWATL.DLL) allows reports that are stored on
an intranet web server to be launched and displayed in a web browser using
an ASP page and a downloaded ActiveX control. Chapter 5 "Using ASP to run

reports," explains this method.

The remaining chapters in this manual provide information for application
developers who are creating reports for use in the Windows environment, whether
the reports will be run via the Viewer or interactively:

� Chapter 6, "R&R Open Scripting," explains how developers can pass a user-

specified report specification to interactive Report Designer by means of a
script file.

� Chapter 7, "Interfacing to Application DLLs," explains use of R&R’s CDLL()
function to call a Windows Dynamic-Link Library (DLL) function from a

report.

� Chapter 8, "Distributing Reports," provides information useful to application

developers who are creating reports for distribution to other users.

� Appendix A, "Runtime Equivalencies," shows the equivalencies among the
Custom Control properties, DLL routines, and Viewer executable control

parameters, as well as the default value for each where applicable.

Chapter 1: Overview

R&R ReportWorks Xbase Developing Applications Page 3

Runtime Requirements

To run the Viewer, you need the following:

� The Viewer program (RRWRUN.EXE), which is installed in the program
directory if you choose to install the optional Viewer files during Setup.

� All Viewer distribution files required for your particular application. See

Chapter 7, "Distributing Reports," for a complete list of required and optional

files.

� A minimum of 500 KB of available memory for execution.

Chapter 2 Using the Viewer Executable

Introduction (Using the Executable)

This chapter explains how to use the Viewer executable (RRWRUN.EXE) to run

reports from the Windows Program Manager or from within Windows application
programs. The explanation of the Viewer executable is presented in the following
sections:

� Executing the Viewer

� Using Control Tables and Files

� Understanding the Viewer Status File

� Application Calls to the Viewer Executable

� Parameter Passing

As noted in Chapter 1, using the Viewer executable is one of three available
methods for accessing the Viewer. The other methods are explained in Chapter 3,
"Accessing the Viewer DLL," and Chapter 4, "Using the ActiveX® Control."

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 5

Executing the Viewer

Executing the Viewer

To use the Viewer executable to run a report, follow these steps:

1. In interactive Report Writer, create and save each report you want to run.

2. Using your database software or a text editor, create a Viewer control table or
file that identifies the report to be run, as well as any parameters you want to

cha at runtime. The structure and contents of control tables and files are
described in the Using Control Tables and Files section of this chapter.

3. Execute the Viewer in one of the following ways:

♦ Click the Windows Start button and select Run; then enter the Viewer
command line and select OK.

Create a shortcut on the Windows desktop: right-click on an empty
area of the desktop, highlight New, and select Shortcut.

Enter the Viewer command line and select Next; enter a shortcut
name and select Finish.

♦ Use the R&R Report Shortcut Maker utility to create shortcuts for
your reports so that you can access them simply by double-clicking
an icon.

♦ Include a call to the Viewer in your Windows application.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 6

Providing Viewer Input

When you run a report with the Viewer executable, you use either a database table
(referred to as a control table) or a text file (referred to as a text control file) to

specify each report you want to run and any parameters you want to modify at
runtime.

You create a control table using your database software. You can create a text
control file using any database language, text editor, or word processor that

produces unformatted text files. For details on control tables and files, see the
Using Control Tables and Files section of this chapter.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 7

The Viewer Command Line

The Viewer Command Line

After creating a report and a control table or file, you can use the Viewer to

generate the report. When you call the Viewer, you must include the name of your
control table or file and, optionally, one or more control table record numbers that
identify the reports to be run.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 8

Command Line Using a Control Table

If you use a database table to provide Viewer control parameters, the command
syntax is:

RRWRUN <table name> [<record #> ...][switches]

Substitute the name (and optionally the path) of the control table for <table
name>. For <record #>, substitute the record number(s) of the report(s) you
want to run; if you do not include one or more record numbers, Viewer will
execute all reports specified in the control table. In addition, you can optionally

include one or more of the command switches listed in Figure 2.1.

For example, to generate the reports specified by records 1 and 2 of the
RRWRUNIN.DBF control table, use a command like this:

RRWRUN RRWRUNIN 1 2

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 9

Command Line Using a Text Control File

If you use a text file to supply control parameters, the command syntax for
running a single report is:

RRWRUN /T<file name> [switches]

Substitute the name (and optionally the path) of the text control file for <file
name>. In addition, you can optionally include one or more of the command
switches listed in Figure 2.1.

To run multiple reports using a text file, you must create a command file, an
unformatted text file that lists the relevant text control files. First create a

separate control file for each report you want to run; then create a command file
listing the control files. To execute the Viewer with a command file, use the
following syntax:

RRWRUN @<command file name> [switches]

For example, if you created three control files, you could then create a command

file named REPORTS.CMD that lists these three control files (each on a separate
line) and execute Viewer using the following command:

RRWRUN @REPORTS.CMD

You can optionally include one or more of the command switches listed in Figure
2.1.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 10

Command Switches

Command Switches

The Viewer command can include one or more of the optional command switches

listed in Figure 2.1. If you are using a text control file, the /T argument must
appear first; the other switches can be in any order on the command line and can
be either upper or lower case.

Switch Specifies...

/T Path and name of text control file

/R Default report directory

/D Default data directory

/I Default image file directory

/Xnnn Default index file name extension

/W[Y|N] Whether database users can (Y) or cannot (N)

modify database files while in use by the Viewer

/O Status file name and/or directory

/E[X|O] Memo field type: (X) for an Xbase editor or (O)

for another memo editor

/H Suppression of Title and Summary lines when no

records are found

/B Suppression of product "splash screen" display

at startup

/AL Name of DLL to be pre-loaded

/M Export report using saved mail option settings

(requires installed Report Designer license)

Figure 2.1 Command Switches

These switches are explained in the following sections.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 11

Text Control File Name (/T)

To execute Viewer using a text control file, include the name (and optionally the
path) of the control file preceded by /T as the first argument to the Viewer

command.

For example, the following command will run the report specified in the SALES.TXT
control file:

RRWRUN /TSALES.TXT

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 12

Default Report Directory (/R)

To specify a default directory where the Viewer will look for the report or library
specified in the RI_REPORT or RI_LIBRARY control table parameter, use the /R
switch in the Viewer command. The directory you specify with this switch will

override any default report directory specified in the RRW.INI file.

For example, the following command specifies C:\LIB as the default report
directory:

RRWRUN RRWRUNIN 1 2 /RC:\LIB

This command will run the reports specified in the first two records of the
RRWRUNIN table. The Viewer will look for the report file in C:\LIB.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 13

Default Data Directory (/D)

The Viewer looks for the data files (tables, indexes, and text memo files) used by
a report in the directory saved with that report. To specify a default data directory

where the Viewer will look for data files when they are not in the saved directory,
use the /D switch in the Viewer command. The directory you specify with this
switch will override any default data directory specified in the RRW.INI file.

For example, the following command specifies C:\DATA as the default data
directory:

RRWRUN RRWRUNIN 1 2 /DC:\DATA

This command will run the reports specified in the first two records of the

RRWRUNIN table. If the Viewer cannot find the data files in the location saved with
the report, it looks in C:\DATA.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 14

Default Image File Directory (/I)

To specify a default directory where the Viewer may look for image files used in
the report, use the /I switch with the Viewer command. The directory you specify

with this switch will override any default image directory specified in the RRW.INI
file.

For example, the following command specifies C:\IMAGES as the default image
directory:

RRWRUN RRWRUNIN 1 2 /IC:\IMAGES

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 15

Default Index File Extension (/X)

If the index files used with the Viewer have a different file extension than the
index files saved with a report, you can use the /X switch to specify a default
index file extension. The Viewer will look for index files with the default extension

if it cannot locate the index files saved with the report. Syntax for this switch is
/Xnnn, where nnn is the 1- to 3-character index file extension. The extension
you specify with this switch will override any index file extension specified in

RRW.INI.

For example, the following command specifies ntx as the file extension the Viewer
should use when it cannot locate index files using their saved extensions:

RRWRUN RRWRUNIN 1 2 /Xntx

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 16

File Write Access (/W)

When executing the Viewer in a multi-user or multi-tasking environment, you can
use the /W switch to control whether database users can modify the tables and
indexes in use by reports. Use the Y or N argument to the /W switch to control

access to these files. The write access you specify with this switch will override
any write access setting in RRW.INI.

To allow database users to modify files in use by a Viewer report, include the
switch /WY in the Viewer command. This setting might not be appropriate for all

reports, but it is useful when you want to allow database users to update files
while you are reporting on them.

If you do not want users to modify files in use by a report, include the switch /WN

in your Viewer command to prevent users from modifying tables and indexes while
the report is running. Other R&R users will still have access to those files. (For

more information about file write access settings, see the explanation of the Allow
Other Users to Update Database Tables setting in Chapter 5, "Setting
Defaults," in Using R&R.) Note that this switch controls R&R’s behavior only when

accessing shared data; your database or network software may impose other file
access restrictions.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 17

Status File Name (/O)

You can distinguish Viewer status files by using the /O switch to specify the
directory in which the file will be created and/or to specify the complete status file

name.

For example, the following command generates a status file named MYSTATUS.
Because no path is specified, the status file will be created in the current directory.

RRWRUN RRWRUNIN 5 /OMYSTATUS

To specify the directory in which a status file should be created, enter a full path
and name. If you enter a path without a file name, the Viewer will create a table
named RRUNOUT.DBF (if you are using a control table) or a text file named

RRUNOUT.OUT (if you are using a text control file) in the specified directory.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 18

Memo Editor (/E)

To identify the type of memo editor that was used to create database memos, use
the /E switch. Use /EX to indicate that memos were created with an Xbase memo

editor or /EO to indicate that memos were created with any other memo editor.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 19

Title/Summary Lines for No Records Found (/H)

In Version 11, there is now a new No Records Found band line property available
for Title band lines. By enabling this property, a Title band will print only when no

records are found. This allows you to place appropriate text on a no records found
line that will print only when no records are found that meet the current report
criteria. This behavior is present for both the report designer and in runtime.

In previous versions, reports run via runtime always printing the title and
summary when no records are found unless a /H switch was included on the

command line. This older behavior required the creation of conditional calculations
to return specific output for a new records found condition. The new method is a
much simpler approach.

To allow reports created in earlier versions to use the older behavior, a new

setting is available in the [Defaults] section of RRW.INI.

If the INI contains the line:

NoRecHDR=0

Runtime will print all title and summary bands when no records are found (the old
default) rather than only those title bands with a No records found checkbox.

The new behavior will be used if NoRecHDR is set to 1 or is absent from the INI.

The new version continues to honor the /H switch on the runtime command line.

If a /H is used, there will be no report output at runtime when no records are
found. Any title band having a no records enabled, will not print.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 20

Suppress Splash Screen (/B)

By default, at startup the Viewer displays a "splash screen" containing product
name and other information. To suppress display of this screen at startup, execute

the Viewer with the /B switch.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 21

Pre-Load DLL (/AL)

To specify the name of a DLL to be loaded at startup, use the /AL switch followed
by the name (optionally including the path) of the DLL to be loaded. You can use

this switch to improve performance of reports containing calculated fields using
the CDLL() function.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 22

Unattended Email Bursting (/M)

Version 10+ allows reports containing saved Mail Option settings to be
automatically run and sent to email recipients without needing to open the Report

Designer and manually select Send via MAPI checkbox. This functionality is
implemented using runtime executable but requires an installed copy of the Report
Designer to be present. If you attempt to use the /M switch on a machine that

does not have an installed copy of the report designer, you will be given an error
message.

The command line to output a report to MAPI is:

RRWRUN.EXE /M<reportname>

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 23

Using the Viewer on a Network

Since the Viewer is available for unlimited use, you need not purchase more than
one copy of R&R to enable multiple users to run Viewer reports. More than one

user can run Viewer reports on a network with only a single copy of the Viewer
programs stored on the network server. Use the Viewer commands in the previous
section to run reports from within an application or from Windows.

Note that the Viewer control table is open for shared access when the Viewer
program is active on a network. In some applications, it may be possible for two

users to access the same record in the control table at the same time. For
example, two users might specify query expressions that affect the value of the
RI_FILTER parameter in the control table. In this case, the Viewer would generate
two reports using the second query expression. To better manage multiple-user

access to the control table, create a separate record in the table for each user. You
can also use the /O switch to create a unique output status table for each user.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 24

Using RRW.INI for Default Information

If RRW.INI, the R&R configuration file, is in the Windows directory, the Viewer will
use the default settings specified in that file. However, command-line switches

take precedence; any setting you specify using a command-line switch will always
override the corresponding RRW.INI setting.

Figure 2.2 lists the RRW.INI settings that the Viewer will use (unless a command-
line switch is used instead).

RRW.INI Setting Specifies

[Defaults] Section

DataDir Default data directory

ImgDir Default image file directory

ImgExt Default image file extension

LibDir Default report/library directory

MemExt Default memo file extension

IndExt Default index file extension

AllowW Database file write access

MemoEd Default memo editor

NoRecHDR Specifies no records found
behavior

[Preferences] Section

PrevWinClr Preview window color

ShowSplash Suppression of product "splash
screen" display at startup

Figure 2.2 RRW.INI Settings Used by Viewer

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 25

Using Control Tables and Files

The following sections describe the structure and contents of database control
tables and text control files.

� Creating a Control Table

� Creating a Text Control File

� Specifying Control Parameters

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 26

Creating a Control Table

Use your database software to create a table that contains columns for the control
parameters; then add a row for each report you want to run and enter values in

the appropriate columns. In the simplest case, the table can include just the report
name (as the RI_REPORT value); as a result, the report will be output to the
destination saved with the report.

Follow these guidelines in creating a control table:

� Specify each parameter in a separate column; the column name must be the

same as the parameter name.

� Predefined parameters must use the column names and data types specified
in Figures 2.3 and 2.11. For character columns, use any supported character
data type. For numeric parameters, use any numeric data type, but note

that the numeric parameters accommodate only integer values.

� User-defined parameters can use any column name and supported character
data type.

� Parameters can be in any order.

� The only required parameter is RI_REPORT (and, for reports from a library,
RI_LIBRARY) or, alternatively, RI_REPPICK.

� You can omit unused (blank) parameters.

� Specify parameters for each report in a separate row.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 27

Creating a Text Control File

You can also create a control file using any text editor or word processing program
that saves unformatted text files. In the file, you specify the report name and any

optional parameter values. You must create a separate text file for each report
you want to run. However, you can run multiple reports with a single Viewer
command by creating a command file that lists each control file.

The format for each parameter name and value in a control file is:

<parameter name>=<value>

Follow these guidelines in creating a text control file:

� Specify each parameter and its value on a separate line.

� Each parameter and its value must fit on a single line.

� The maximum length of a line is 1000 characters.

� You can list parameters in any order.

� Parameter names are case insensitive (that is, you can enter them in upper,

lower, or mixed case).

� Predefined parameters must use the names listed in Figures 2.3 or 2.11;
user- defined parameters can have any name. See the section in this chapter
entitled Parameter Passing for information about user-defined parameters.

� The only required parameter is RI_REPORT (and, if running reports from a
library, RI_LIBRARY) or, alternatively, RI_REPPICK.

� Leading and trailing white space in both the parameter name and the value

is ignored.

� Lines beginning with a left square bracket ([) are ignored.

� Lines beginning with a semicolon are ignored.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 28

Specifying Control Parameters

The control table or file can contain two kinds of parameters:

� Predefined parameters specifying values that control frequently changed
report features such as queries. The control table must contain a column for

RI_REPORT (or RI_REPPICK). It can contain values for some or all of the
other predefined parameters. These parameters are listed in Figures 2.3
and 2.11.

� User-defined parameters specifying values that control other report
features such as user-supplied text strings, for use by the RIPARAM()
function in the report. The control file need not include any user-defined
parameters. If any of these parameters are present, the control file can

contain values for some or all of them. For information about adding
columns to the control file for user- defined parameters, see the
Parameter Passing section of this chapter.

If the control file does not contain a valid entry for report name (and report library,
if applicable), the Viewer cannot run the report. If the control table does not
contain values for any predefined or user-defined parameters designed to change
characteristics of the saved report, the Viewer will run the report as saved.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 29

Width of Predefined Parameters

Predefined parameters have maximum widths specified in Figure 2.3 and 2.11.
While you should not exceed these widths, you can decrease the widths of these

parameters to correspond to the actual width of your data. For example, if you
plan to specify a scope using strings that will be no longer than 20 characters, you
can define the RI_LOSCOPE and RI_HISCOPE parameters as 20 characters wide.
User-defined parameters can be up to 512 characters wide.

Parameter Values

Parameters that require character values can contain upper, lower, or mixed case
letters, unless the parameters contain values used in a query. By default R&R is
case insensitive, but if you edited RRW.SRT to make R&R case sensitive, you
should enter query values in the case used in the database.

Some predefined parameters can have a question mark (?) value in the control
table or file. Use the question mark to specify that the Viewer should display a
dialog box prompting the user to enter or select a value. For example, when
RI_PRINTER contains a question mark, the Viewer will display a dialog box

prompting the user to choose screen, printer, or export as the report’s output
destination.

The question mark parameter value is explained in more detail in the descriptions
of the parameters for which it is valid: RI_PRINTER, RI_REPPICK, RI_WPTR,

RI_WPORT, RI_SCOPE, RI_QUERY, and user-defined parameters.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 30

Parameters for Modifying Report Characteristics

Figure 2.3 lists the predefined Viewer control parameters that can be used to
control report characteristics. The next section of this chapter lists and explains

the parameters that apply specifically to the size and appearance of the preview
window at runtime.

In the Data Type column, the letter C represents the character data type, N

represents numeric, and L represents logical.

Parameter
Name

Contents

Data
Type

Max.
Width

RI_ALIAS1 –
RI_ALIAS99

In each, a related table,
index, or index tag name

C 300

RI_BEGPAGE Beginning page number N 9

RI_CHKTIME Checkpoint frequency
flag

C 1

RI_COPIES Number of copies N 9

RI_DISPERR Display-error flag C or L 1

RI_ENDPAGE Ending page number N 9

RI_EXPDST Export destination C 8

RI_FILTER Query expression C 1024

RI_GROUP1 –
RI_GROUP8

Group field override C 20

RI_HISCOPE High scope value C 250

RI_LIBRARY Report library name C 128

RI_LOSCOPE Low scope value C 250

RI_MASTER Master table name C 128

RI_MEMO Text memo file name C 128

RI_MINDEX Master index information C 150

RI_NOESC User escape flag C or L 1

RI_OUTFILE Output file name C 128

RI_PAGESIZE Page size C 80

RI_PRINTER Destination C 32

RI_QUERY Query flag C 1

RI_REPORT Report name C 254

RI_REPPICK Report select/pick flag C 1

RI_SCOPE Scope flag C 1

RI_SORT1 – Sort field override C 21

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 31

RI_SORT8

RI_STATUS Display-status flag C or L 1

RI_TEST Test-pattern flag C or L 1

RI_WPORT Printer port C 40

RI_WPTR Printer name C 40

RI_WTITLE Window title C 200

Figure 2.3 Predefined Viewer Control Parameters

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 32

RI_ALIAS1 - RI_ALIAS99

These parameters are optional. You can use each of the parameters to specify a
related table, index, and/or index tag name to override those saved with the

report. The syntax for a file override specification is:

<alias> = <table>,<index>,<tag>

In this specification, <alias> represents the alias assigned to the table in the
saved report; <table> represents the replacement table, which can be a complete
path and table name, a directory, or a table name; <index> represents the name
and optional path of the new index file; and <tag> represents the name of an

index tag if the specified index file is a multiple-field index file. You must specify at
least one of the three replacement names in any override specification; you can
specify all three.

For example, the following specification replaces the related table assigned the
CUST02 alias in the saved report with a table named CUST03.DBF in the DATA

directory on drive C. It also replaces the saved index file with the CUST96.MDX
index file, and the saved index tag with the CUSTID index tag:

CUST02 = C:\DATA\CUST03.DBF,C:\DATA\CUST96.MDX,CUSTID

You can also use a file override specification to replace just the index file, just the
index tag, or both. If you omit the <table> or <index> part of the specification,
you must use a comma as a place holder.

For example, the following specification replaces the index file used to read the
CUST02 table with the LASTNAME.NDX file in the DATA directory on drive C. The
comma serves as a place holder for the <table> specifier:

CUST02 = ,C:\DATA\LASTNAME.NDX

For a multiple-field index, the following override specification replaces the saved
tag used with the CUST02 table and index with the LASTNAME tag:

CUST02 = ,,LASTNAME

If you do not include file override specifications in any of these fields, the Viewer
uses the database and index files saved with the report. It searches for these files
using the search rules explained in Chapter 7, "Distributing Reports."

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 33

RI_BEGPAGE, RI_ENDPAGE

These parameters are optional. The beginning and ending page number
parameters allow you to override the starting and ending page numbers saved

with the report. The default value for these parameters is blank.

To specify page numbers, include an RI_BEGPAGE value, an RI_ENDPAGE value,
or both. If you specify both, RI_ENDPAGE must be equal to or greater than
RI_BEGPAGE. For example, users can restart a canceled report where it was
interrupted by specifying the starting page number as the RI_BEGPAGE value. (See

the description of the RO_PAGES field in the Understanding the Viewer Status
File section.) To reprint one or more consecutive pages of a report, specify the
page numbers in the RI_BEGPAGE and RI_ENDPAGE parameters. To print just one
page, specify the same page number for both parameters.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 34

RI_CHKTIME

This parameter is optional. The checkpoint frequency flag controls how frequently
the Viewer status table, by default RRUNOUT.DBF, is updated. The checkpoint flag

can contain the letter R or P. R tells the Viewer to update the RRUNOUT table
after completing each report; P tells the Viewer to update the table after
completing each page. The default value is R.

Specify P as the checkpoint value if you want Viewer users to be able to determine
how much of a report was printed before an abnormal termination (for example, a

system failure). When this value is P, the Viewer will update the RO_PAGES page
number value in the status table after each page of the report is processed. (See
the section entitled Understanding the Viewer Status File.) In case of a report
termination, the report can be restarted where it left off.

If your application doesn’t require the ability to restart terminated reports, specify
R and the report will print a bit faster. Users can always reprint a report starting at
the beginning.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 35

RI_COPIES

This parameter is optional. It contains the number of copies of the report you want
to print. The number must be between 0 and 999, inclusive. If you leave this

parameter blank or enter 0, the Viewer prints the number of copies saved with the
report.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 36

RI_DISPERR

This parameter is optional. It controls whether errors encountered by the Viewer
are displayed on the screen. If the parameter contains a true logical value (T), any

Viewer error messages are displayed in addition to being written to the Viewer
status table, by default RRUNOUT.DBF. If the parameter contains a false logical
value (F) or is blank, the Viewer error messages are not displayed, but are written
to the Viewer status table. If the Viewer cannot open the status table, an error

message is displayed regardless of the RI_DISPERR value.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 37

RI_EXPDST

Use this parameter to specify the destination (display, file, or printer) for a report
saved with an Export Type setting of Excel PivotTable or Excel Chart (you must

also specify the appropriate value in RI_PRINTER). A value of D will cause Excel to
display the PivotTable or Chart; F will cause Excel to send it to the file specified by
RI_OUTFILE; and P will cause Excel to print it to its default printer.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 38

RI_FILTER

The optional RI_FILTER parameter contains a logical expression that will override
the query saved with a report, if any, when the value in RI_QUERY is O for

Override.

RI_FILTER expressions use the same syntax as calculated field expressions that
return logical values. (For details, see Chapter 7, "Working with Calculated Fields,"
in Using R&R.) The RI_FILTER expression can be up to 1024 characters long.
When an expression is specified and the value of RI_QUERY is O, the Viewer

selects all records where the value of the RI_FILTER expression is true. The
expression can refer to any data available in the report, as well as many calculated
and total fields.

For example, if you enter the expression CITY="Dallas", the Viewer will select all

records where the value of this expression is true, in other words all records where
the value in the CITY field is Dallas. If the city name is in a memo field named
NOTE, the expression NOTE="*Dallas*" will select all records in which the NOTE

field contains the word "Dallas."

Entering the expression PASTDUE=T tells the Viewer to select all records where
the value in the PASTDUE field is the logical true value. Entering AMOUNT>=200
will select all records where the value in the AMOUNT field is equal to or greater
than 200. Entering the following expression will select all records where the date

in the INVDATE field of the RRORDERS table is January 31, 2002:

RRORDERS- >INVDATE={01/31/2002}

You can enter compound expressions using parentheses. For example, the
following expression selects all records where the value in the CITY field is either

Dallas or Houston and where the value in the SALES field is greater than 50,000:

(CITY="Dallas" or CITY="Houston") and SALES>50000

Certain restrictions apply to the use of total fields in RI_FILTER expressions. The
totals must be pre-processed. If the totals are group totals, you can use only the
highest-level preprocessed total in the RI_FILTER expression. For example, if the

report has pre-processed subtotals at group levels 1 and 2, the RI_FILTER
expression can contain only the level-1 pre-processed subtotal.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 39

RI_GROUP1 - RI_GROUP8

The optional RI_GROUP parameters (RI_GROUP1 through RI_GROUP8) enable you
to specify different group fields from those saved with the report. Figure 2.4

explains the possible values for these parameters (in each case, substitute the
table alias for alias and the field name for fieldname).

Value Changes Group Selection to

alias->fieldname Field fieldname in table alias

fieldname Field fieldname (fieldname must be

unique)

Figure 2.4 Group Field Override Values

You must specify group overrides beginning with the first level you want to change
and proceeding to the depth desired (that is, you cannot skip group levels).

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 40

RI_LIBRARY

This parameter is necessary only if you are running reports from a report library
file; it identifies the library containing the report(s) you want to run. The library

name can include a path. For example, a value of
C:\DBASE\DATA\CUSTOMER.RP5 in this parameter identifies the report library as
CUSTOMER.RP5 in the subdirectory \DBASE\DATA on drive C.

If you don’t include a path, the Viewer searches for the file in the default library
directory specified on the command line or in RRW.INI. If no default is specified on

the command line or in RRW.INI, the Viewer searches for the library in the current
directory.

If the library you specify cannot be found or read, the Viewer writes an error in the
status table and, optionally, displays an error message box (see RI_DISPERR).

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 41

RI_MASTER

This parameter is optional. It contains the name and/or directory location of a
table that will override the master table saved with the report. The fields in the

master table you specify with RI_MASTER must match in name, number, and data
type the fields in the original master table.

� If you specify both a directory and a table name, this directory is the
only directory searched and this table name is the only table the Viewer

searches for.

� If you specify a directory without a table name, the Viewer searches the
specified directory for the master table name saved with the report.

� If you specify a table name without a directory, the Viewer searches for

a table with the specified name in the directory of the master table
saved with the report, then in the default data directory specified on the
command line or in RRW.INI. If no default data directory is specified, the
Viewer searches for the table in the current directory.

If you omit this parameter or leave it blank, the Viewer uses the master table

saved with the report.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 42

RI_MEMO

This parameter is optional. It contains the name and/or directory location of the
text memo file used in the report, which will override the text memo file saved

with the report (if any).

� If you specify both a directory and a file name, this directory is the only
directory searched and this file name is the only file the Viewer searches
for.

� If you specify a directory without a file name, the Viewer searches the

specified directory for the text memo file name saved with the report.

� If you specify a file name without a directory, the Viewer searches for a
file with the specified name in the directory saved with the report, then
in the default data directory specified on the command line or in

RRW.INI.

If you leave this parameter blank, the Viewer uses the text memo file saved with
the report, if any.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 43

RI_MINDEX

The RI_MINDEX parameter enables you to specify a master index for a report that
was saved without one, override the master index saved with a report, or remove

a saved master index from a report. To specify a master index or override the
saved one, the specification can consist of any or all of three values in the
following order:

<index>,<index type>,<tag>

In this specification, <index> represents the index file specification, which can be
a full path and file name, a directory, or a file name.

D If you specify both a directory and a file name, this directory is the only

directory searched and this file name is the only file the Viewer searches for.

D If you specify a directory without a file name, the Viewer searches the

specified directory for the master index name saved with the report.

D If you specify a file name without a directory, the Viewer searches for a file

with the specified name in the directory of the master index saved with the
report, then in the current master database directory, then in the default
data directory specified on the command line or in RRW.INI. If no default is

specified, the Viewer searches in the current directory.

In this specification, <index type> is the data type of the new index, represented
as A for datetime, C for character, D for date, or N for numeric. You can omit this
value if you are overriding a saved master index and the replacement index is the
same type (although it is good practice to include the data type specifier). If the

index named in the specification is a multiple-field index file (MDX, CDX, or WDX),
the <tag> part of the specification represents an index tag. If you omit the
<index> or <index type> part of the specification, use a comma as a place
holder for each.

For example, the following specification replaces the master index saved with the
report with an index named CUST02.MDX in the CUSTOMER directory on drive C.
Since the replacement index is the same data type as the original index, the
specification includes a comma in place of the <index type>. It also replaces the

saved index tag with the CUSTID index tag:

C:\CUSTOMER\CUST02.MDX,,CUSTID

The following specification changes only the index tag of the master index saved
with the report:

,,CUSTID

To remove the master index saved with the report without specifying a new
master index, use the RI_MINDEX value ,R.

If you omit this parameter or leave it blank, the Viewer uses the master index
saved with the report, if any.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 44

RI_NOESC

This parameter is optional. The user escape flag can contain either a true (T) or
false (F) logical value. True means the Cancel button in the status window is not

active while reports are being output. False means the user can select Cancel
during report output to pause or end the job. The default value is false. Note that
the status window appears only when RI_STATUS is set to true.

If the user cancels the report, the RO_ECODE field in the status table contains a C
(see Understanding the Viewer Status File).

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 45

RI_OUTFILE

This parameter is optional. It contains the name of an output file. Use it to send
report output to a file, or use it in combination with RI_PRINTER and/or

RI_EXPDST to export to any export type saved with the report. To send the report
directly to the saved destination, omit this parameter or leave it blank.

� When RI_PRINTER is empty or contains the D or question mark (?) value,
the Viewer outputs the report (including printer codes) to the file specified in

RI_OUTFILE .

� When RI_PRINTER contains A, X, or W, the Viewer exports the report to the
file specified in RI_OUTFILE (overriding the saved file name) as a text file
(without printer codes), Xbase file, or worksheet file.

� When RI_PRINTER contains CSV, MSWORD, RTF, H, or V, the Viewer
exports the report to the file specified in RI_OUTFILE (overriding the saved
file name) as a text data (comma-, tab-, or character-separated, Word

Merge, Rich Text Format, HTML, or ActiveX PDI file.

� When RI_PRINTER contains Excel Chart or Excel PivotTable and
RI_EXPDST is F (for file), the Viewer exports the report to the Excel file

specified in RI_OUTFILE.

The name of the output file can include a path. For example, to send a report to a

text file INVOICE.TXT in the C:\PROJECT\TEXT subdirectory, specify the following
value for the RI_OUTFILE parameter:

C:\PROJECT\TEXT\INVOICE.TXT

If RI_OUTFILE does not include a path, the Viewer places the file in the current
directory.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 46

RI_PAGESIZE/RI_PSIZE

This parameter is optional. You can use it to control the page size for the runtime
report.

Available values for RI_PAGESIZE are:
A4
A5
B4

LEGAL
LETTER
EXECUTIVE
STATEMENT

You can alternatively use the name PI_PSIZE as the equivalent of RI_PAGESIZE to

conform to the 10 character field name limit for a DBF control table.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 47

RI_PRINTER

This parameter is optional and can have one of the following values: D, A, P,
Excel Chart, Excel PivotTable, RTF, CSV, MSWORD, W, X, H, or V or a

question mark (?).

The D value specifies that the report be sent to the display, allowing the user to
preview the report before printing it. After previewing the report, the user can
select Print on the Preview screen to send the report to the printer saved with the
report or specified as the RI_WPTR value. Note that if the value of RI_PRINTER is

D and RI_OUTFILE is specified, the report will be output to the file specified in
RI_OUTFILE when the user selects Print in the Preview screen.

The A value specifies that the report be sent to the text file named as the
RI_OUTFILE value. The Viewer will export the report as a text file without printer

codes.

The P value specifies that the report be sent to the printer saved with the report or
specified as the RI_WPTR value, even if the report’s saved destination is a file.

The Excel Chart and Excel PivotTable values specify that the report be exported
to an Excel Chart or Excel PivotTable, respectively. If you specify one of these

values, you can also include a value for RI_EXPDST to control the output
destination (display, file, or printer).

Use the CSV, MSWORD, RTF, H, or V value to export to a text data, Word Merge,
Rich Text Format, HTML, or ActiveX PDI file, respectively. You can also specify an
RI_OUTFILE value to override the output file name saved with the report.

To output a report to a worksheet or Xbase file, specify W or X, respectively, as
the RI_PRINTER value and specify the file name as the RI_OUTFILE value. If you
do not specify a file extension, R&R appends .WKS to worksheet files and .DBF to
Xbase files.

The question mark (?) value allows the user to select the print destination (screen,
printer, or export) at runtime. When the value of RI_PRINTER is a question mark,
the user will see the dialog box shown in Figure 2.5. If RI_WTITLE is specified, the
title bar will contain the RI_WTITLE value. If RI_WTITLE is empty, the title bar will

contain the report name.

The user can select Screen to preview the report, Printer to print it, or Export to
export it. If RI_OUTFILE contains a file name, the report will be output to the file
specified by the RI_OUTFILE value if the user selects Export.

Figure 2.5 Report Destination Dialog Box

If you omit this parameter or leave it blank and RI_OUTFILE is empty or missing,

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 48

the Viewer outputs the report to the printer saved with the report or specified as

the RI_WPTR value. If you omit this parameter or leave it blank and RI_OUTFILE

contains a file name, the Viewer outputs the report to a file with printer codes.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 49

RI_QUERY

The optional RI_QUERY parameter allows you to control whether a query is applied
to the report. RI_QUERY can have one of four values:

� S (Saved) means to run the report using the query saved with it, if any. The
Viewer will ignore the expression in RI_FILTER and run the report exactly as
it was saved.

� E (Entire) means to ignore any query saved in the report or contained in the

RI_FILTER parameter.

� O (Override) means to override the saved query (if any) with the expression
in the RI_FILTER parameter. The Viewer will generate the report with the
records selected by the RI_FILTER expression.

� ? (Question mark) means to allow the user to enter a query or edit the
saved query at runtime. If no query was saved with the report, the Insert
Selection Rule dialog displays, as shown in Figure 2.6.

Figure 2.6 Insert Selection Rule Dialog Box

If a query was saved with the report, the Query dialog box displays, as shown in

Figure 2.7.

Figure 2.7 Query Dialog Box

When RI_QUERY contains a question mark (?), the value of RI_FILTER is always
ignored.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 50

RI_REPORT

This parameter is required (unless a value of R or ? has been supplied for
RI_REPPICK). It contains the name under which the report was saved. For

example, to run a report named "Order Invoice" that was saved as a compound
document file, enter Order Invoice in this parameter (note that you do not need
to include the RRW extension). Except for case, you must enter the name exactly
as it was saved.

If the report you want to run is in a report library, you must also include the
appropriate value for RI_LIBRARY. The report must be in the library specified by
RI_LIBRARY.

If you leave this parameter blank or if the report you select cannot be retrieved,
the Viewer writes an error in the status table and, optionally, displays an error

message box (see RI_DISPERR).

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 51

RI_REPPICK

This parameter is optional and can contain one of two values: ? or R. If you
include this parameter, you do not need to include the RI_REPORT parameter; if

you include both RI_REPPICK and RI_REPORT values, Viewer ignores the
RI_REPORT value.

Use the question mark (?) value in this parameter to have the Viewer prompt the
user to select a succession of reports. When the value is a question mark (?),

Viewer will prompt the user to select a report. After Viewer executes the selected
report, the user will then be prompted to select another report. This prompt for
report selection will repeat after each report until the user selects Cancel.

Use the R value in this parameter to prompt the user to select just one report.
When the value is R, Viewer will prompt the user to select a report (as with the ?

value), but will not prompt for an additional report selection after the report has
been executed.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 52

RI_SCOPE, RI_LOSCOPE, RI_HISCOPE

These parameters are optional. The scope flag, RI_SCOPE, allows you to control
the range of master table records that should be included in the report. You can

specify a range of record numbers or index key values, ignore the scope saved
with a report, or prompt the user to enter a range at runtime. When you specify
scope values, the Viewer reads only the records in the master table whose record
number or index key is within the specified range. You can often speed up a report

by using scope values with a master index. If you omit this parameter or leave it
blank, the Viewer uses the saved scope values.

RI_SCOPE can contain one of four values:

� S for "Saved," which means to use the scope values saved with the report.

� E for "Entire," which means to ignore any scope values.

� O for "Override," which means to override the saved scope values with the

values in the two parameters RI_LOSCOPE and RI_HISCOPE. (Be careful to
use the letter O and not the digit zero, 0.)

� Question mark (?), which allows the user to enter or change scope values at
runtime. When RI_SCOPE contains a question mark, the dialog box shown in

Figure 2.8 displays. If RI_WTITLE is specified, the title bar will contain the
RI_WTITLE value. If RI_WTITLE is blank or missing, the title bar will contain
the report name.

Figure 2.8 High and Low Scope Dialog Box

If RI_SCOPE contains O (Override), RI_LOSCOPE specifies the starting value of the
scope and RI_HISCOPE specifies the ending value of the scope. If RI_SCOPE
contains S, E, or ?, the Viewer ignores RI_LOSCOPE and RI_HISCOPE.

Each RI_LOSCOPE and RI_HISCOPE value can contain either a record number or
an index key value up to 250 characters wide. If no master index was saved with

the report (or added using RI_MINDEX), the Viewer assumes the value is a record
number. Otherwise, the Viewer assumes the value is a key value in the master
index. In this case, the report begins reading the master table at the first record

equal to or greater than the RI_LOSCOPE value and stops reading the master
table after the last record found that is equal to or less than the RI_HISCOPE
value.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 53

The range fully includes the end points. In other words, if you enter A as the low

value and M as the high value, the Viewer reads the first record in which the value

begins with A through the last record in which the value begins with M. For
example, if you have a customer table indexed on last name and you want to print
invoices for all customers whose name begins with a letter between A and M, enter
O in RI_SCOPE, the letter A in RI_LOSCOPE, and the letter M in RI_HISCOPE.

All scope values must be character strings. Note that a date scope value must be
in the format mm/dd/yyyy. Do not enclose scope values within quotes.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 54

RI_SORT1 - RI_SORT8

The optional RI_SORT parameters (RI_SORT1 through RI_SORT8) enable you to
specify different sort fields from those saved with the report. Figure 2.9 explains

the possible values for these parameters (in each case, substitute the table alias
for alias and the field name for fieldname).

Value Changes Sort to

+alias->fieldname Field fieldname in table alias, ascending

-alias->fieldname Field fieldname in table alias, descending

alias->fieldname Field fieldname in table alias, ascending

+fieldname Field fieldname, ascending (fieldname

must be unique)

-fieldname Field fieldname, descending (fieldname

must be unique)

Figure 2.9 Values for RI_SORT Parameters

You must specify sort overrides beginning with the outermost sort field and

proceeding to the last level you want to override (that is, you cannot skip sort
levels).

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 55

RI_STATUS

The RI_STATUS parameter enables you to specify whether the Viewer should
display a status window while it is generating a report. If the parameter contains a

true logical value (T), the Viewer will display a status window. If RI_STATUS is set
to true and RI_NOESC is set to false, the status window will contain a Cancel
choice that allows the user to terminate a report in progress.

If the RI_STATUS parameter is missing, empty, or contains a false logical value
(F), the Viewer will not display a status window; instead it will display as an icon

while it is running.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 56

RI_TEST

This parameter is optional. The test pattern flag can contain either a true (T) or
false (F) logical value. True means to display a dialog box before printing the

report to allow the user to print a test pattern. False (or blank) means don’t offer
the user the choice to print a test pattern.

A test pattern is useful for aligning forms in the printer. The user can print the test
pattern as many times as necessary and then print the report. If you enter T, the

Viewer displays a box containing OK, Cancel, and Print buttons. The user can
select OK and print as many test patterns as necessary to align the forms. Once
the forms are aligned, the user can select Print to begin printing the actual report.

Note that a test pattern includes only page header, record, and page footer lines.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 57

RI_WPORT

This parameter is optional. Enter a value such as LPT1: to override the printer
port (and the printer associated with that port) saved with the report. Note that

the colon is required. If both RI_WPTR and RI_WPORT values are supplied, they
must match an installed Windows printer.

You can also use the question mark (?) value or enter the word Default for this
parameter. When RI_WPORT contains a question mark, the user will see the Print

dialog box shown in Figure 2.10. When RI_WPORT contains Default, Viewer will
use the default Windows printer and port. See the description of the RI_WPTR
parameter.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 58

RI_WPTR

This parameter is optional. Enter one of the following values to override the printer
saved with the report:

� The name of an available Windows printer (for example, "HP LaserJet Series
5"). The value is case insensitive. If you enter a value in this parameter and
RI_WPORT is blank, Viewer uses the port associated with the printer name in
the list of available Windows printers.

� The question mark (?) value, to allow the user to select a printer at runtime.

o When RI_WPTR contains a question mark, the Print dialog displays,
as shown in Figure 2.10.

� The word "Default" to force the Viewer to use the current default Windows
printer.

The Printers applet (accessible from the Windows Control Panel) controls which
printers are listed in the Print dialog box. Initially, the printer saved with the
report is highlighted. The user can select another printer and port as necessary.

If this parameter is blank, the Viewer uses the printer saved with the report. If the
report was saved with the "Print to File" option selected and the value of
RI_PRINTER is blank, the RI_WPTR value controls which printer driver the Viewer
will use. If the value of RI_PRINTER is A, CSV, MSWORD, RTF, W, X, H, or V for

export to a file, the Viewer will ignore the value in RI_WPTR.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 59

RI_WTITLE

This parameter is optional. Use this parameter to specify a report title (for
example, "Quarterly Profits") that will display in the following places:

� The Title Bar of the Preview window;

� The Print Status window (if RI_STATUS = T);

� Below the Viewer icon (if RI_STATUS = F);

� The title bar of the dialog box that displays when a question mark is
specified as the value for RI_REPPICK, RI_PRINTER, RI_SCOPE, or any user-
defined parameter.

If this parameter is blank, the Viewer will use the report name as the window title.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 60

Creating PDF output

You can send the output of a runtime report to a PDF file by using the control file
fields RI_PRINTER, RI_WPTR, RI_OUTFILE. The following

� You must leave the RI_PRINTER field blank.

� RI_WPTR will contain R&R PDF Export

� RI_OUTFILE will contain the name and optional path of the PDF file you wish
to create.

Example runtime text input file:

RI_REPORT=D:\DATA\Status Report.RRW

RI_PRINTER=

RI_WPTR=R&R PDF Export

RI_OUTFILE=D:\DATA\Stat0902.PDF

When runtime is executed using this input file, the output of Status
Report.RRW will be sent to the PDF file Stat0902.PDF.

Note that runtime users must have the appropriate PDF driver files
available and that they must have the system rights to allow them
to install a printer. If not, the error message "Cannot match

printer or port in control file" will be returned and the PDF file will
not be created.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 61

Parameters to Control Viewer Preview Display

The parameters listed in Figure 2.11 control the size and appearance of the
preview window at runtime.

Parameter
Name Controls

Data
Type

Max.
Width

RI_WBORDER Presence and type of N 1
border

RI_WCTRL Presence of system L 1
control box in caption bar

RI_WHEIGHT Height of preview window N 4
in pixels

RI_WLEFT Left position of preview N 4
window in pixels

RI_WMAX Presence of maximize L 1
button in caption bar

RI_WMIN Presence of minimize L 1
button in caption bar

RI_WTOP Top position of preview N 4
window in pixels

RI_WWIDTH Width of preview window N 4

in pixels

Figure 2.11 Control Parameters for Viewer Report Preview

The following sections explain the purpose and valid entries for each parameter.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 62

RI_WBORDER

This parameter enables you to control whether the Viewer preview window is fixed
or sizable. You can enter one of the following numeric values:

D 1 results in a fixed-size window with a standard border.

D 2 results in a variable-size window with a standard border.

D

RI_WCTRL

Use this parameter to specify whether the preview window will have a system
control box (for switching to other applications or for closing the preview window)
in the caption bar. If this parameter contains a logical True value, the window will

have a control box; if False, the window will not have a control box.

RI_WHEIGHT

This parameter controls the height of the preview window. Enter the height value

in screen pixels. Note that in order to control the size of the preview window at
runtime, you must enter values for both RI_WHEIGHT and RI_WWIDTH.

RI_WLEFT

This parameter controls where the left edge of the preview window will be
anchored. Enter the position in screen pixels.

RI_WMAX

Use this parameter to control whether the preview window will have a maximize
control in the caption bar at runtime so that a user can run a report full-screen. If

this parameter contains a logical True value, the window will have a maximize
control; if False, the window will not have a maximize control.

RI_WMIN

Use this parameter to control whether the preview window will have a minimize
control in the caption bar at runtime. If this parameter contains a logical True

value, the window will have a minimize control; if False, the window will not have
a minimize control.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 63

RI_WTOP

This parameter controls where the top of the preview window will be anchored.
Enter the position in screen pixels.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 64

RI_WWIDTH

This parameter controls the width of the preview window. Enter the width value in
screen pixels.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 65

Understanding the Viewer Status File

While the Viewer is executing, it writes status information into a file (either a table
or a text file) and, if the RI_DISPERR flag is T, may display error message boxes.
For an explanation of the RI_DISPERR flag, see the Using Control Tables and

Files section.

The status file created by the Viewer is called RRUNOUT.DBF (if you are using a
control table) or RRUNOUT.OUT (if you are using a text control file), unless you
use the /O switch with the Viewer command to specify a different file name. The
Viewer creates the status file in the current directory, overwriting any existing

status file of the same name.

After calling the Viewer, you should check the status file for information about
Viewer processing. If the Viewer encountered an error, the file will contain an error
message that explains why a report was canceled, as well as an error code that

lets you determine the type of error. The status file also contains the number of
reports and pages output, so a report can be restarted where it left off.

To avoid being confused by multiple status files, delete existing status files before
calling the Viewer. If you are using the Viewer on a network, use /O to specify a

unique status file for each user.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 66

Status File Fields

Figure 2.12 lists the fields in the Viewer status file. Each field name has the prefix
RO_ to indicate that it provides information about Viewer Output.

Field Name Contents Data Type Width

RO_ECODE Error code Character 1

RO_EMSG Error message Character 80

RO_PAGES Number of pages

completed

RO_REPORTS Number of reports

completed

RO_RIRECNO Last report
processed

Figure 2.12 Fields in Viewer Status File

Numeric 9

Numeric 5

Numeric 5

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 67

RO_ECODE

The error code field contains one of the following characters:

� N – the Viewer completed without error; RO_EMSG is blank.

� C – the user selected Cancel to cancel a report; the RO_EMSG message is

"Report canceled."

� J – the Viewer command or the control table contains a syntax error; see

the message in the RO_EMSG field and/or the number in the RO_RIRECNO

field.

� R – the report definition or the value in a control table field caused an error
in the report; see the RO_EMSG field.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 68

RO_EMSG

The error message field is blank if Viewer processing completed without an error.
If processing was canceled for any reason, this field contains the error message. If
RO_ECODE contains C, the message is "Report canceled," meaning the user

canceled a report. If RO_ECODE contains R, the message is the same as the one
that displays when you attempt to output the report from within Report Writer.

If RO_ECODE contains J, there is an error in the Viewer command or in the control
table. If the error is in the control table, the record number of the erroneous record

is returned in the RO_RIRECNO field. Use this record number along with the error
message to find and correct the error.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 69

RO_REPORTS

This field contains the number of reports that completed successfully. For
example, if you call the Viewer to print three reports and the printer jams during

the second report, this field contains the number 1, indicating that one report
completed successfully. Use this number to determine which report did not
complete and to restart it.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 70

RO_PAGES

This entry contains the number of the last page completed in the report (or in the
most recently processed report, if the Viewer command specifies multiple reports).

If a report terminated due to an error, the entry contains the number of the last
page completed before the error occurred. Use this number to restart a canceled
report at the page where the error occurred.

For example, if you are printing pages 10 through 20 of a report and the printer
jams on page 15, this entry will contain 14 (the number of the last page that

printed successfully). If RO_PAGES contains 14, you can restart the report at page
15 by entering 15 in RI_BEGPAGE and 20 in RI_ENDPAGE.

Note that the Viewer does not update the RO_PAGES field after each page unless
the value of RI_CHKTIME in the control table is P. See the section in this chapter

entitled Creating and Using Control Tables and Files for a description of
RI_CHKTIME.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 71

RO_RIRECNO

This field contains the control table record number of the last report processed,
whether or not it completed successfully. You can use this number together with

the error message in RO_EMSG to find and correct an error in the control table.
This number is also useful for restarting a report that was part of a multi-report
job, since it is the control table record number of the last report that was
processed.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 72

Application Calls to the Viewer Executable

This section provides examples illustrating how you can incorporate calls to the
Viewer in C, Visual Basic, FoxPro for Windows, and PowerBuilder.

Note that these examples are provided only to demonstrate the syntax for calls to
the Viewer for each language.

If your application includes logic to check the Viewer status file, keep in mind that
up-to-date information from that file will not be available until the Viewer reports
complete. To avoid confusion between old and new status files, delete any existing
status files before calling the Viewer.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 73

Calling the Viewer from C

The Windows API provides a function named WinExec for executing programs. To
call the Viewer from a Windows C program, you could include a function such as

the one illustrated in Figure 2.13.

Figure 2.13 Calling the Viewer from a C Program

In this example, the call to the Viewer includes the /R switch to specify a default
report library directory. You can include any combination of the command switches
explained in the section of this chapter entitled Command Switches.

Note that the second parameter supplied to WinExec, SW_SHOW, is ignored if you
have included control table values to govern the Viewer display.

BOOL RunThisReport (LPSTR lpRunin, int iReport, LPSTR lpRptlib)

{

// Run a single report.

// Input:

// lpRunin pointer to Viewer control table name

// iReport control table record number of report

// lpRptlib pointer to default library directory name

// Output: FALSE if Windows could not execute the Viewer program

char szBuffer [128];

UINT error;

wsprintf(szBuffer,"rrwrun %s %d /R%s",lpRunin,iReport,lpRptlib);

if ((error=WinExec((LPSTR)szBuffer, SW_SHOW)) < 32)
{

LoadString(hAppInst, EXE_ERR+error, szBuffer, sizeof(szBuffer));
MessageBox(hAppWnd, szBuffer, szAppname, MB_ICONSTOP);
return FALSE;

}

return TRUE;

}

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 74

Calling the Viewer from Visual Basic

Visual Basic provides a function named Shell that takes two arguments: a
command-line string and a Windows display style. The Viewer ignores the second

argument if display characteristics are specified by Viewer control table values.

Figure 2.14 illustrates a subroutine that could be used to call the Viewer from a
Visual Basic application.

Figure 2.14 Sample Visual Basic Subroutine Calling the Viewer

In this example, the Viewer is executed using the Viewer control table in
C:\RRW\RRSAMPLE. The /WN switch specifies that database users will not have
write access to the database files used by the Viewer reports while those reports

are being generated. Note that you can use any combination of Viewer command
switches.

Sub Command1_Click ()
cmd$ = "c:\rrw\rrwrun.exe c:\rrw\rrsample\rrwrunin 1 /WN"

i% = Shell(cmd$, 1)

End Sub

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 75

Calling the Viewer from Windows FoxPro

You can execute the Viewer from FoxPro for Windows using the FoxPro RUN
command. For example, you could include the following line to call the Viewer

from a FoxPro for Windows application:

RUN /N RRWRUN ACCOUNTS 1 /RC:\DEPT99

In this example, the Viewer is executed using a control table named "accounts."
The /R switch specifies a default library directory of c:\dept99. The /N switch is
used in FoxPro to execute another Windows-based application.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 76

Calling the Viewer from PowerBuilder

You can execute the Viewer from a PowerBuilder script using the SetProfileString
command to change any of the parameters in the control file and the RUN

command to execute the Viewer. Figure 2.15 illustrates a script that could be used
to call the Viewer from a PowerBuilder application.

Figure 2.15 Sample PowerBuilder Script Calling the Viewer

SetProfileString("D:\RRWRUN.IN","rrwrun","ri_copies","2")
run("RRWRUN.EXE /Td:\rrwrun.in /Od:\rrwrun.out")

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 77

Using ParameteRRs and RIPARAM

Parameter Passing

You can control some features of the layout and content of reports at runtime by
prompting users to enter values for parameters, then passing the values to
reports. Typically, you prompt the user for a text string or other data item that is

not stored in the database. For example, you might prompt the user for his or her
name and use the name in a "Report Author" field in the page footer or title.

You can also use parameter passing to control report processing at runtime. You
can pass parameters to a report in three different ways:

� Define ParameteRR fields within the Report Designer. This method
allows you to present multiple fields via a single input screen. It also

enables you to define validation, instructions, and custom error
messages for each ParameteRR and requires no additional application
code.

� Define special parameters in the Viewer control table or file. At runtime,
prompt the user to enter values that are stored in these parameters.
Pass the values to your report using a calculated field whose expression
includes the RIPARAM() function.

� Create your own menus and prompts and store user entries and
selections in a special parameter table. When you create the report, link
the parameter table to the report’s master table and use values from the

parameter table in the report.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 78

Passing Control Parameter Values

Using ParameteRR Fields

The ParameteRR field capability that was been added in Version 9 is now the

easiest and most convenient way to accomplish runtime parameter passing. See
the Working with ParameteRR Fields chapter in the Using R&R Report Designer
manual for full details about ParameteRR field definition. ParameteRR fields

function in runtime just as they do within the Report Designer.

ParameteRR fields are explicitly designed to require user selection of values.
However when run in a runtime environment, there may be circumstances where a
report containing parameteRRs may be run unattended. To prevent a parameteRR
report from halting unattended report processing, there is now a 2 minute timeout

for the ParameteRR value entry screen. If this screen is open for 2 minutes
without user interaction, a brief notice box is displayed saying that the screen will
close unless the OK button is selected.

If OK is not selected, the report is run using the current parameteRR default

values.

The following sections describe the older methods of using the RIPARAM()
function and setting up a parameter table. These older methods can still be used
in Version 10 and can even be used in conjunction with the new ParameteRR

fields.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 79

Passing RIPARAM based Control Parameter Values

Follow these general steps to pass values to reports using control table or control
file parameters.

1. In the Viewer control table or file, define parameters for values you want
to pass to the report.

2. Prompt the user to enter a value for the parameter in one of two ways:

i. Create your own menus or prompts within your application.

ii. Enter a question mark as the value of the control table
parameter.

3. Incorporate the user’s entry into the report using the RIPARAM() function in
a calculated field expression.

The following sections describe each step in detail.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 80

Defining Control Parameters

In addition to the predefined parameters listed in Figures 2.3 and 2.11, your
control table or file can include parameters you define. A user-defined parameter

can have any name and can be up to 512 characters wide. You can define as many
parameters as you need for your application. The control table or file need not
include any user-defined parameters. If any are present, the table or file need not
contain values for all of them.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 81

Prompting for User Input

You can get user input in two ways:

� Supply a menu or prompt in your application that leads the
user to supply a value. Pass this value to the Viewer DLL via
setUserParam.

� Enter a question mark (?) value for any user-defined field.
Whenever a user-defined field contains a question mark, the
user will be prompted to enter a value.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 82

Using the Question Mark Parameter Value for RIPARAM()
evaluation

You can get user input for reports by using a question mark (?) as the value for a

user-defined parameter. Optionally, the value can also include the text you want
to appear as a prompt.

For example, if you want to prompt the user for his or her name, you might create
an AUTHOR parameter in your control table or file and give it the value "?Enter

your name:". At runtime, the user will see the dialog box shown in Figure 2.16.

Figure 2.16 Viewer Dialog Box with Prompt

The size and shape of this dialog box is the same for all user-defined parameters.
The title bar contains the value of RI_WTITLE. If RI_WTITLE is not specified, the

Viewer uses the report name. For control tables, the length of the field in the
control table determines the maximum length of the user’s entry. For example, if
the length in the control table is 30 characters, the Viewer will not allow entry of
more than 30 characters. If the user selects Cancel, the report will not run and the

Viewer will write the "Canceled" message to the status file.

If your control parameter contains a question mark only and no text string, the
Viewer displays the dialog box shown in Figure 2.16 with the prompt "Enter value
for (FIELD NAME)."

In your report you would need a calculated field with the expression
RIPARAM("AUTHOR"). When the report is executed the value of this expression
will be the entry that is made in the prompted dialog.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 83

Incorporating User-Supplied Values in Reports via the
RIPARAM() function

Once the user has entered or selected a value that is stored in the Viewer control

table or file, you pass the value to your report using the RIPARAM() function in a
calculated field expression. RIPARAM() takes a control parameter name as its
argument and returns the parameter’s value as a string.

For example, in a general ledger application, you might create a control parameter
CONAME for the company name, then prompt the user to enter a company name.

To use the company name on the report, create a calculated field in Report Writer
whose expression is:

RIPARAM("CONAME")

You can place the calculated field wherever you want the company name to
appear on the report.

Although this example uses an RIPARAM() calculated field to provide user input

as text in the report, you can use such fields to perform many different functions
in a report. For example, you might prompt the user for a value for a DISCOUNT
field. In the calculated field on the report, you can convert the user-entered
character data to numeric using a calculated field expression such as:

ORDERTOT * VAL(RIPARAM("DISCOUNT"))

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 84

Using a Parameter Table

You can also pass parameters to a report by storing user-supplied values in a
separate table called a parameter table and relating this table to the report’s
master table.

To pass parameters to a report using a parameter table, follow these steps:

1. Decide on the parameters you need and create a parameter table using
your Xbase software.

2. In interactive Report Writer, create a new report or retrieve and modify an
existing report.

3. Create a calculated field that you will use to link the report’s master table

to the parameter table.

4. Relate the master table to the parameter table using the calculated field as
the linking field from the master table.

5. Use the fields from the parameter table in your report and save the report.

6. Create an application program that will get the information from the user,

store it in the parameter table, and call the Viewer to generate the report.

The following sections describe steps 1 through 4 in more detail and provide an
example of using a parameter table in an application.

Chapter 2: Using the Viewer Executable

R&R ReportWorks Xbase Developing Applications Page 85

Creating the Parameter Table

A parameter table can contain as many parameters as you need for your
application. For example, you may want the user to supply a date, a range of

dates, an account number, a category name, a list of items, or a logical true/false
flag. Include one field for each parameter. You can use any data type. Assign a
field width sufficient for your purpose.

Most likely, your parameter table will have a single record. However, if you want
to create one parameter table for use with multiple reports, the table should have

a record for each report. For each report, append one blank record to contain the
parameters.

Creating the Calculated Linking Field

In interactive Report Writer, use Calculations ⇒ Calculated Field to create a

calculated linking field whose expression is a constant equal to the record number
or index key value for the appropriate record in the parameter table. If your
parameter table has a single record, you can simply use the number 1 as the

calculated linking field value.

If your parameter table has multiple records, you might use the key field value as
the calculated linking field value. For example, if the parameter table’s key field is
the report name, the calculated field’s expression is the report name that identifies
the appropriate record, as in "INVOICE1."

Relating the Master Table and the Parameter Table

Use Database ⇒ Relations to relate the master table and the parameter table.

Use the calculated field as the linking field from the master table and the record
number or key field as the linking field from the parameter table.

Chapter 3 Accessing the Viewer DLL

Introduction (Accessing the DLL)

This chapter explains how to use the Viewer DLL to run reports from within
Windows application programs. As noted in Chapter 1, the Viewer DLL provides

one of three methods for running reports using the Viewer. The other methods are
explained in Chapter 2, "Using the Viewer Executable," and Chapter 4, "Using the
Custom Control."

The Viewer DLL provides a direct application programming interface to the Viewer.
The general logic of using this API to invoke the Viewer is to cycle through the
following four steps as many times as you wish:

� Select a report or report/library combination with
chooseReport or getRuntimeRecord. Or, select a report
library with getNewReportHandle and setLibrary.

� Use various routines to get and set runtime control
parameters.

� Use writeRuntimeRecord to save the parameters in a

Viewer Control File for later execution or execRuntime to use
the Viewer to run the report immediately.

� Clean up the current report with endReport.

The routines provided by this API are grouped into five categories:

� Action Routines

� Get-Parameter Routines

� Set-Parameter Routines

� User-Interface Routines

� Error-Handling Routines

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 87

Action Routines

Action routines are used to begin working with the runtime DLL or a specific
report, to run a report, and to free resources used in working with a report or the
runtime DLL as a whole.

� chooseReport specifies a report or library/report

combination.

� endReport cleans up resources associated with a given

report.

� execRuntime runs a given report.

� getNewReportHandle obtains the handle of an empty report-

information structure.

� getRuntimeRecord specifies a library/report combination
along with parameter values as defined in a Viewer Control File

record.

� writeRuntimeRecord writes to a Viewer Control File record
the current parameter values associated with a given report.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 88

Get-Parameter Routines

Get-parameter routines are used to obtain the values of various parameters as
they were saved with the report, or as they have been overridden by values from
a Viewer Control File or by previous uses of set-parameter routines. It is important

to understand the concept of the "current" value of a parameter.

� If you have initiated the processing of a report via a call to
chooseReport and have not yet used a set-parameter routine
for a given parameter, the current value of that parameter is the

value saved in the report. Once you have used a set-parameter
routine for the parameter, the current value is the value you
specified via the set-parameter routine.

� If you have initiated the processing of a report via a call to
getRuntimeRecord and have not yet used a set-parameter
routine for a given parameter, the current value of the
parameter is the value saved in the report unless the parameter

is overridden in the runtime control file record, in which case the
current value is the value from the control file record. Once you
have used a set- parameter routine for the parameter, the

current value is the value you specified via the set-parameter
routine.

� If you have initiated the processing of a report via a call to
getNewReportHandle and have not yet used a set-parameter

routine for a given parameter, the current value of the parameter
is the default value of that parameter. Once you have used a set-
parameter routine for the parameter, the current value is the
value you specified via the set-parameter routine.

All get-parameter routines return the current values of parameters. Once you have
used the set-parameter routine for a given parameter, there is no way to get a
previous value. If you need to be able to get original values, use chooseReport

and then use get-parameter routines to get the original values. Your program must
remember the original values once it begins using set-parameter routines to
override them. Alternatively, use chooseReport and remember your overrides
instead of calling set-parameter routines. Then call the set-parameter routines just

before calling execRuntime or writeRuntimeRecord.

� getBeginPage gets the value of the starting-page-number
parameter.

� getCopies gets the value of the number-of-copies parameter.

� getDisplayErrors gets the value of the display-errors flag.

� etDisplayStatus gets the value of the display-status-window

flag.

� getEndPage gets the value of the ending-page-number

parameter.

� getExportDest gets the value of the export-destination flag.

� getFilter gets the filter expression.

� getFilterUsage gets the value of the filter-usage flag.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 89

� getFirstFieldName gets the name of the first field from

tables used in the report.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 90

� getFirstFilteredFieldName gets the name of the first field

suitable for use as a sort or group field.

� getFirstGroupField gets the name of the first group field of
the report.

� getFirstRelationInfo gets the values of parameters
pertaining to the first related table used in the report.

� getFirstSortField gets the name of the first sort field of the
report.

� getFirstUserParam gets the name of the first user-
parameter used in the report.

� getHighScope gets the value of the high-scope

parameter.

� getLibrary gets the name of the report library

parameter.

� getLowScope gets the value of the low-scope

parameter.

� getMasterIndexInfo gets the value of the master-index
parameter.

� getMasterTableName gets the name of the master table
used in the report.

� getMemoName gets the name of the ASCII memo file used
in the report.

� getNextFieldName gets the name of the next field from

tables used in the report.

� getNextFilteredFieldName gets the name of the next field
suitable for use as a sort or group field.

� getNextGroupField gets the name of the next group field of

the report.

� getNextRelationInfo gets the values of parameters
pertaining to the next relation used in the report.

� getNextSortField gets the name of the next sort field of the

report.

� getNextUserParam gets the name of the next user-

parameter used in the report.

� getOutputDest gets the value of the output-destination
parameter.

� getOutputFile gets the name of the output file.

� getPreventEscape gets the value of the prevent-user-escape
flag.

� getPrinter gets the name of the current printer.

� getPrinterPort gets the name of the current

printer port.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 91

� getReportPick gets the value of the report-

selection flag.

� getScopeUsage gets the value of the scope-usage

flag.

� getStatusEveryPage gets the value of the report-status-

frequency flag.

� getTestPattern gets the value of the print-test-pattern flag.

� getWinTitle gets the value of the window-title parameter.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 92

Set-Parameter Routines

Set-Parameter routines are used to override the existing values of various report
parameters. Once you have called a given set-parameter routine, the value
returned by the corresponding get-parameter routine will be the value most
recently set for that parameter.

� setBeginPage sets the value of the starting-page-number
parameter.

� setCopies sets the value of the number-of-copies

parameter.

� setDataDir specifies an override for the default data

directory.

� setDisplayErrors specifies whether to display errors.

� setDisplayStatus specifies whether to display a status

window.

� setEndPage sets the value of the ending-page-number

parameter.

� setExportDest sets the value of the export-destination flag.

� setFilter specifies a filter expression.

� setFilterUsage sets the value of the filter-usage flag.

� setGroupField sets the name of a group field.

� setHighScope sets the value of the high-scope parameter.

� setImageDir specifies an override for the default image

directory.

� setIndexExtension specifies a default index filename

extension.

� setLibrary specifies a report-library.

� setLibraryDir specifies an override for the default
report/library directory.

� setLowScope sets the value of the low-scope parameter.

� setMasterIndexInfo specifies master-index parameters.

� setMasterTableName sets the name of the master table used

in the report.

� setMemoName sets the name of the ASCII memo file used in
the report.

� setOutputDest sets the output-destination flag.

� setOutputFile sets the name of the output file.

� setPreventEscape specifies whether the user should be

allowed to terminate the report.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 93

� setPrinter specifies the name of the printer to be used in
generating a report.

� setPrinterPort specifies the name of the port to be
used for printing.

� setRelationInfo sets the values of parameters pertaining to
a related table used in the report.

� setReportPick specifies the optional use of a report-selection

dialog in the Viewer that allows the user to select one or more
reports at runtime.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 94

� setScopeUsage specifies the value of the scope-usage flag.

� setSortField specifies the name of a sort field.

� setStatusEveryPage specifies how often report status should
be returned.

� setStatusFileName specifies the filename for returning

status information from the Viewer executable.

� setSuppressTitle specifies whether to print Title and

Summary areas of reports when no records are found.

� setTestPattern specifies whether to generate a test pattern.

� setUserParam specifies a value for a user-parameter used in

the report.

� setWinBorderStyle sets the style of the preview window

border.

� setWinControlBox specifies whether the preview window

should include a control box.

� setWinHeight specifies the height of the preview window.

� setWinLeft specifies the position of the left edge of the

preview window.

� setWinMaxButton specifies whether the preview window
should include a maximize button.

� setWinMinButton specifies whether the preview window
should include a minimize button.

� setWinTitle specifies the window title to be used in certain
Viewer windows.

� setWinTop specifies the position of the top edge of the

preview window.

� setWinWidth specifies the width of the preview window.

� setWriteAllow specifies whether to allow write-access to files

being used by the Viewer executable.

� setXbaseEditor specifies whether memo files were created
with an Xbase memo editor.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 95

User-Interface Routines

User-Interface routines use Windows dialogs to present the user with a list of
alternatives for various report parameters.

� choosePrinter is used to present the user with a dialog from

which to select a printer.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 96

Error-Handling Routines

The Error-Handling routines are used to obtain information about errors resulting
from calls to the other routines.

� getErrorInfo is used to obtain an error code and/or error text

relating to the most recent error condition.

� resetErrorInfo is used to reset the current value of the error
code and error text. This is useful if you only check for errors
after certain calls and want to be certain that the error status you

obtain via getErrorInfo is not from some previous call.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 97

Important Note

Many functions provided by this API require the calling routine to specify one or
more addresses at which to return values. For each such pointer argument, the
calling routine also specifies the size of the buffer pointed to. It is essential that
the indicated size be no larger than the actual size of the buffer pointed to. The

Viewer DLL usually returns precisely the number of bytes specified by the buffer
size, if necessary padding with null bytes to fill the buffer. If the calling routine
specifies a size that is larger than its actual buffer, unpredictable bad things will

happen.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 98

Functions Provided by the Viewer DLL

The following sections present detailed descriptions of the functions provided by
the Viewer DLL API. The functions are listed in alphabetical order. For a listing of
functions by category, see the preceding section of this chapter. Each function
description begins with a function prototype, which is followed by a brief

description of each argument, a list of values returned by the function, a function
description, a list of related functions, and an example in C of a call to the
function.

The API for the Viewer DLL is defined in two header files, one named RRRPT32.H,
for use in C/C++ programs, and one named RRDECL32.BAS for use in Visual Basic
programs.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 99

choosePrinter

BOOL FAR PASCAL choosePrinter(int hReport, LPSTR lpszPrinter, int prSize,
LPSTR lpszPort, int poSize);

hReport Report handle.

lpszPrinter Address of buffer in which to return selected printer name.

prSize Size of buffer pointed to by lpszPrinter.

lpszPort Address of buffer in which to return selected printer port.

poSize Size of buffer pointed to by lpszPort.

Return Value

The choosePrinter function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use choosePrinter to allow the user to interactively select a new printer and
printer port. The name of the printer selected by the user will be returned in the
buffer specified by lpszPrinter to the extent allowed by prSize. The name of the
printer port selected by the user will be returned in the buffer specified by
lpszPort to the extent allowed by poSize.

Related Functions

setPrinter, setPrinterPort, getPrinter, getPrinterPort

Example

To allow the user to select a new printer and printer port for the report whose
handle is hRpt and then apply those selections to the report:

{

char prbuf[100];

char pobuf[10];

choosePrinter (hRpt, (LPSTR)prbuf, 100, (LPSTR)pobuf, 10);

setPrinter (hRpt, (LPSTR)prbuf);

setPrinterPort (hRpt, (LPSTR)pobuf);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page
100

chooseReport

int FAR PASCAL chooseReport (LPSTR lpszAppName, LPSTR lpszLibName, int

lSize
LPSTR lpszRepName, int rSize);

lpszAppName Name of calling application.

lpszLibName Name of report library, or buffer in which to return name of
library, if any.

lSize Size of lpszLibName buffer.

lpszRepName Name of report, or buffer in which to return name of report.

rSize Size of lpszRepName buffer.

Return Value

The chooseReport function returns a report-information handle if there are no
errors. A return value of zero indicates an error. To obtain more information
about the error use getErrorInfo with a handle of zero.

Description

The lpszLibName argument specifies the name of a report library, points to an
empty buffer, or is a NULL pointer. The lpszRepName argument specifies the
name of a report file, specifies the name of a report contained in a report library,
points to an empty buffer, or is a NULL pointer. How chooseReport interprets
these arguments is described below.

If lpszLibName and lpszRepName both point to non-empty buffers,
chooseReport opens the library specified by lpszLibName, reads the report
specified by lpszRepName, and prepares a report-information structure based on
that report.

If lpszLibName points to a non-empty buffer and lpszRepName points to an
empty buffer or is NULL, chooseReport assumes lpszLibName contains the
name of a report library and presents a dialog via which the user can select a
report from those available in the specified library. After the user selects a
report, chooseReport opens the specified library, reads the selected report,
copies the selected report name into lpszRepName to the extent allowed by rSize
(unless lpszRepName is NULL or rSize is zero), and prepares a report-
information structure based on that report.

If lpszRepName points to a non-empty buffer and lpszLibName points to an
empty buffer, chooseReport assumes lpszRepName contains the name of a
report file, reads the report from the specified file, and prepares a report-
information structure based on that report.

If both lpszLibName and lpszRepName point to empty buffers or are NULL,
chooseReport displays a File-Open dialog, via which the user can select a
report file or a report library. If the user selects a report file, chooseReport
reads the selected report, copies the report name into lpszRepName to the
extent allowed by rSize (unless lpszRepName is NULL or rSize is zero), and
prepares a report-information structure based on that report. If the user selects

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page
101

a report library, chooseReport presents a dialog via which the user can select a
report from the list of reports available in the selected library. After the user
selects a report, chooseReport opens the library, reads the selected report,
copies the library name into lpszLibName to the extent allowed by lSize (unless
lpszLibName is NULL or lSize is zero) and the report name into lpszRepName to
the extent allowed by rSize (unless lpszRepName is NULL or rSize is zero), and
prepares a report-information structure based on that report.

If lpszLibName or lpszRepName (when interpreted as a report file name) does
not include a path, the Viewer looks for the a file of that name in the default
library directory specified in RRW.INI. If no default is specified in the INI file
either, the Viewer looks for the file in the current directory.

The handle returned by chooseReport is used as input to most other functions
contained within this API. The lpszAppName argument identifies the calling
application.

Related Functions

endReport, getRuntimeRecord

Example

To allow the user to select a new report from the library c:\libs\reports.rp5 :

{

char RepName[40];

char szLibName[]="c:\\libs\\reports.rp5";

int hRpt;

hRpt = chooseReport (NULL,szLibName,sizeof(szLibName),

szRepName,sizeof(szRepName));

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page
102

endReport

BOOL FAR PASCAL endReport (int hReport);

hReport Report handle.

Return Value

The endReport function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Call the endReport function to signify that your application is finished with the
report associated with hReport. This enables endReport to clean up resources
associated with that report.

Related Functions

chooseReport, getRuntimeRecord, getNewReportHandle

Example

To inform the DLL that you are finished with the report whose handle is hRpt:

endReport (hRpt);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 100

execRuntime

BOOL FAR PASCAL execRuntime (int hReport, BOOL bWait, int cmdShow,
LPINT lpiECode, LPLONG lplPageCount, LPSTR lpszEMsg, int emSize);

hReport Report handle.

bWait Synchronous operation flag.

cmdShow Windows ShowWindow value.

lpiECode Error-code buffer.

lplPageCount Page-count buffer.

lpszEMsg Error-message buffer.

emSize Size of lpszEMsg buffer.

Return Value

The execRuntime function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

After using chooseReport, getRuntimeRecord, or getNewReportHandle to
prepare a report-information structure and using other functions provided by this
API to modify the structure’s contents, use execRuntime to run the report. If
bWait is zero, execRuntime will invoke RRWRUN.EXE to begin execution of the
report and then return. If bWait is non-zero, execRuntime will not return until
the report execution is complete, in which case the buffers provided by lpiECode,
lpiPageCount, and lpszEMsg will be used to return status.

If bWait is non-zero, lpiECode will contain one of the following characters when
execRuntime returns:

N Successful execution of the requested report.

C The user canceled the report. lpszEMsg will contain "Report

canceled."

J The report structure identified by hReport contains inconsistent
or incorrect information. lpszEMsg will contain an error message
describing the problem.

R The requested report began to execute, but failed to complete
successfully. lpszEMsg will contain an error message describing

the problem.

Regardless of the value of bWait, any error resulting from the failure of
execRuntime to invoke the Viewer executable is available through
getErrorInfo.

If you have used setStatusEveryPage to request that the runtime status be
updated after every page and bWait is non-zero, lpiPageCount will contain the
number of the last page completed in the report. If the report did not complete
successfully, lpiPageCount contains the number of the last page completed

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 101

before the error occurred. Use this number to restart an incomplete report at the
page where the error occurred. For example, if lpiPageCount is 14, you can use
setBeginPage to restart the same report at page 15. (Use setEndPage to set
the ending page to 999999999.)

If bWait is zero, execRuntime leaves lpiECode, lpiPageCount, and lpiEMsg
unchanged. In this case, the Viewer will create a runtime status file and the
information provided by lpiECode, lpiPageCount, and lpiEMsg is instead provided
by the fields RO_ECODE, RO_PAGES, and RO_EMSG. See Chapter 2 for details of
the runtime status file.

See Windows SDK documentation for the ShowWindow() function for
information about legal values of cmdShow.

Related Functions

chooseReport, getRuntimeRecord, getNewReportHandle, setBeginPage,

setEndPage, setStatusEveryPage

Example

To synchronously run the report whose handle is hRpt and test the results:

{

int ecode; long

pages; char

emsg[200]; int

done = FALSE;

while (!done)

{

// code to let user make changes to parameters, etc.

execRuntime (hRpt, // report handle

1, // synchronous SW_SHOW,

// current size/position

(LPINT)&ecode, // place for error code

(LPLONG)&pages, // ... pages printed

(LPSTR)emsg, // ... error message

200); // size of emsg buffer

switch (ecode)

{

case 'N': // success

case 'C': // user canceled report

done = 1; // either way, we're happy

break;

case 'J': // problem with parameters

// error handling code

break;

case 'R': // problem running report

// error handling code

break;

} // end switch

} // end while

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 102

getBeginPage

BOOL FAR PASCAL getBeginPage (int hReport, LPLONG lplBeginPage);

hReport Report handle.

lplBeginPage Starting-page-number buffer.

Return Value

The getBeginPage function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getBeginPage to obtain the current value of the "starting page" parameter.
getBeginPage returns the current value of the starting page number in the
form of a long integer in the buffer pointed to by lplBeginPage. See
setBeginPage for a discussion of this parameter.

Related Functions

setBeginPage, getEndPage, setEndPage, execRuntime

Example

To get the current starting page for the report whose handle is hRpt:

{

LONG begPage;

getBeginPage (hRpt, (LPLONG)&begPage);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 103

getCopies

BOOL FAR PASCAL getCopies (int hReport, LPINT lpiCopies);

hReport Report handle.

lpiCopies Number-of-copies buffer.

Return Value

The getCopies function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getCopies to obtain the current value of the "number of copies" parameter
for the report specified by hReport. getCopies returns the number of copies in
the form of an integer in the buffer pointed to by lpiCopies. See setCopies for a
discussion of this parameter.

Related Functions

setCopies

Example

To get the current number of copies for the report whose handle is hRpt:

{

int copies;

getCopies (hRpt, (LPINT)&copies);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 104

getDisplayErrors

BOOL FAR PASCAL getDisplayErrors (int hReport, BOOL FAR * lpbDispErr);

hReport Report handle.

lpbDispErr Display-errors-flag buffer.

Return Value

The getDisplayErrors function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getDisplayErrors to obtain the current value of the "display errors"
parameter for the report specified by hReport. getDisplayErrors returns the
parameter in the form of a boolean in the buffer pointed to by lpbDispErr. See
setDisplayErrors for a discussion of this parameter.

Related Functions

setDisplayErrors

Example

To get the display-errors flag for the report whose handle is hRpt:

{

BOOL bDispErrors;

getDisplayErrors (hRpt, (BOOL FAR *)&bDispErrors);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 105

getDisplayStatus

BOOL FAR PASCAL getDisplayStatus (int hReport, BOOL FAR *

lpbDispStatus);

hReport Report handle.

lpbDispstatus Display-status-flag buffer.

Return Value

The getDisplayStatus function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getDisplayStatus to obtain the current value of the "display status"
parameter for the report specified by hReport. getDisplayStatus returns the
parameter in the form of a boolean in the buffer pointed to by lpbDispStatus.
See setDisplayStatus for a discussion of this parameter.

Related Functions

setDisplayStatus, getPreventEscape, setPreventEscape

Example

To get the display-status flag for the report whose handle is hRpt:

{

BOOL dispStatus;

getDisplayStatus (hRpt, (BOOL FAR *)&dispStatus);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 106

getEndPage

BOOL FAR PASCAL getEndPage (int hReport, LPLONG lplEndPage);

hReport Report handle.

lplEndPage Ending-page-number buffer.

Return Value

The getEndPage function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getEndPage to obtain the current value of the "ending page" parameter for
the report specified by hReport. getEndPage returns the current value of the
ending page number in the form of a long integer in the buffer pointed to by
lplEndPage. See setEndPage for a discussion of this parameter.

Related Functions

setEndPage, getBeginPage, setBeginPage

Example

To get the current ending page for the report whose handle is hRpt:

{

LONG endPage;

getEndPage (hRpt, (LPLONG)&endPage);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 107

getErrorInfo

BOOL FAR PASCAL getErrorInfo (int hReport, LPSTR lpszMsg, int mSize,
LPINT lpiCode);

hReport Report handle.

lpszMsg Error-text buffer.

mSize Size of lpszMsg buffer.

lpiCode Error-code buffer.

Return Value

The getErrorInfo function returns a non-zero value if it is returning error
information in lpszMsg and/or lpiCode. It returns zero if no error has occurred
about which it can return information.

Description

Use getErrorInfo to obtain information about the most recent error condition
relating to the report indicated by hReport. (If the error is a result of a call to
chooseReport, getRuntimeRecord, or getNewReportHandle, you will not
have a valid report handle and should use a handle of zero.) When other
routines in this API indicate that an error has occurred by returning a zero value,
you can use getErrorInfo to get details. getErrorInfo returns an error
message in the buffer pointed to by lpszMsg to the extent allowed by mSize,
unless lpszMsg is NULL or mSize is negative or zero. getErrorInfo returns an
error code in the buffer pointed to by lpiCode unless lpiCode is NULL.

getErrorInfo returns one of the following values in lpiCode:

� C (Cancel) indicates that the user canceled out of a dialog

presented by the Viewer DLL.

� D (Diagnostic) indicates a miscellaneous error such as
insufficient memory.

� I (Iteration) indicates that there are no more values for the
requested getFirst... or getNext... function. This is not
really an error condition. It would be returned after the third
and subsequent calls to getNextSortField in a report

containing two sort fields, for example.

� J (Job Control) indicates a problem with the Viewer Control
File specified as lpszControlFile to getRuntimeRecord.

� L (Library) indicates a problem with a report library being
processed by the Viewer DLL. It would be returned, for
example, if chooseReport were unable to read the report
library specified as lpszLibName.

� S (Syntax) indicates a problem with the arguments passed to
the routine generating the error. This might indicate NULL
passed for a required pointer or a buffer size of zero, for
example.

� V (Value) indicates that no value is available for the
parameter whose value you have requested.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 108

The information returned by getErrorInfo will pertain to the most recent error

resulting from a call to the runtime DLL involving the specified report handle.
The DLL does not clear its internal error status on entry to its routines. For this
reason, you should test for errors after each call, chain calls together in a single
if statement with an error handler for the compound statement, or use
resetErrorInfo before any calls for which you are interested in obtaining error
status. Since resetErrorInfo always returns non-zero, you can safely begin a
chain of calls with a call to resetErrorInfo, as in the example below.

Related Functions

resetErrorInfo

Example

if (resetErrorInfo(...) // reset error status

&& setLibrary (...)

&& setMasterTable (...)

&& setFilter (...)

&& setFilterUsage (...)

)

execRuntime (hRpt, ...); // sets went ok; run report

else // error on one of the sets, check it out

{

char emsg[200];

int ecode;

getErrorInfo (hRpt, (LPSTR)emsg, 200, (LPINT)&ecode);

// ecode will have an error code

// emsg will have an error message, truncated to 200

// bytes, if necessary

// code to do something with this error info

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 109

getExportDest

BOOL FAR PASCAL getExportDest (int hReport, LPSTR lpszVal);

hReport Report handle.

lpszVal Export-destination-flag buffer.

Return Value

The getExportDest function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getExportDest to obtain the current value of the "export destination"
parameter for the report specified by hReport. See setExportDest for a
discussion of this parameter.

Related Functions

setExportDest

Example

To get the current export destination for the report whose handle is hRpt:

{

char dest[2];

getExportDest (hRpt, (LPSTR)dest);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 110

getFilter

BOOL FAR PASCAL getFilter (int hReport, LPSTR lpszFilter, int fSize);

hReport Report handle.

lpszFilter Filter buffer.

fSize Size of lpszFilter buffer.

Return Value

The getFilter function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getFilter to obtain the current value of the "filter" parameter for the report
specified by hReport. getFilter returns the current filter (in the form of a valid
calculated field expression) in the buffer pointed to by lpszFilter, to the extent
allowed by fSize. If setFilter has not previously been used to override the filter
saved with the report, getFilter returns a logical expression equivalent to the
filter defined via the Query dialog in Report Writer or overridden in the Viewer
Control File record if hReport was obtained via a call to getRuntimeRecord. If
setFilter has been called to override the filter saved with the report, getFilter
simply returns the value previously set. See setFilter for details of filter
expressions. See setFilterUsage for details of the interaction between values
set by setFilterUsage and setFilter.

Related Functions

setFilter, getFilterUsage, setFilterUsage

Example

To get the current filter for the report whose handle is hRpt:

{

char filter[2000];

getFilter (hRpt, (LPSTR)filter, 2000);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 111

getFilterUsage

BOOL FAR PASCAL getFilterUsage (int hReport, LPSTR lpszVal);

hReport Report handle.

lpszVal Filter-usage-flag buffer.

Return Value

The getFilterUsage function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getFilterUsage to obtain the current value of the "filter usage" parameter
for the report specified by hReport. getFilterUsage returns the current value in
the form of a single character in the buffer pointed to by lpszVal. See
setFilterUsage for a discussion of filter-usage values and the interaction
between values set by setFilterUsage and setFilter.

Related Functions

setFilterUsage, getFilter, setFilter

Example

To get the current filter-usage flag for the report whose handle is hRpt:

{

char filterUsage[2];

getFilterUsage (hRpt, (LPSTR)filterUsage);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 112

getFirstFieldName

BOOL FAR PASCAL getFirstFieldName (int hReport, LPSTR lpszFieldName,
int fnSize);

hReport Report handle.

lpszFieldName Fieldname buffer.

fnSize Size of lpszFieldName buffer.

Return Value

The getFirstFieldName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getFirstFieldName to get the first fieldname available for use in the report
specified by hReport. getFirstFieldName returns the fieldname with alias
qualifier in the buffer pointed to by lpszFieldName to the extent allowed by
fnSize. Use getNextFieldName in a loop to get the rest of the available
fieldnames. See getErrorInfo for information about how to detect end-of-list.

Related Functions

getFirstFilteredFieldName, getNextFieldName

Example

To get the fieldnames available for the report whose handle is hRpt, and add

them to the combo box whose handle is hCombo:

int InitFieldCombo(HWND hCombo, int hRpt)

{

char szField[80]; // buffer for field name

int nFields = 1; // return count of fields

// Extract field names from the report.

if (getFirstFieldName(hRpt, szField, sizeof(szField)))

{

ComboBox_AddString(hCombo, szField);

while (getNextFieldName(hRpt, szField, sizeof(szField)))

{

ComboBox_AddString(hCombo, szField);

// This returns false if not an iterator error.

if (!getError())

return FALSE;

nFields++;

}

}

else return getError(); // Error handling routine.

return nFields;

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 113

getFirstFilteredFieldName

BOOL FAR PASCAL getFirstFilteredFieldName (int hRepstf, LPSTR

lpszFieldName,
int fnSize, int filter);

hReport Report handle.

lpszFieldName Fieldname buffer.

fnSize Size of lpszFieldName buffer.

filter Filter ID.

Return Value

The getFirstFilteredFieldName function returns zero if an error occurs. To

obtain more information about the error use getErrorInfo.

Description

Use getFirstFilteredFieldName to get the first fieldname available for use in
the report specified by hReport that is suitable for use in the context specified by
filter. getFirstFieldName returns the filename with alias qualifier in the buffer
pointed to by lpszFieldName to the extent allowed by fnSize. Use
getNextFilteredFieldName in a loop to get the rest of the available fieldnames
suitable for use in the specified context. See getErrorInfo for information about
how to detect end-of-list.

The filter argument specifies the context to be used in deciding which available
fields to return. The valid values for filter, defined in rreport.h, are
FILTER_ID_SORT or FILTER_ID_GROUP which return fields suitable for use as
sort or group fields, respectively.

Related Functions

getNextFilteredFieldName, getFirstFieldName, getNextFieldName

Example

See getFirstFieldName for an example of adding fieldnames to a combo box.
To modify that example to get suitable sort fields, simply change the function
names from getFirstFieldName and getNextFieldName to
getFirstFilteredFieldName and getNextFilterFieldName and add a new last
argument to both of FILTER_ID_SORT.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 114

getFirstGroupField

BOOL FAR PASCAL getFirstGroupField (int hReport, LPSTR lpszName, int

nSize);

hReport Report handle.

lpszName Group-field-name buffer.

nSize Size of lpszName buffer.

Return Value

The getFirstGroupField function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getFirstGroupField and getNextGroupField to obtain the current values
of the "group field" parameters in the report specified by hReport.
getFirstGroupField returns the name of the first group field in the buffer
pointed to by lpszName, to the extent allowed by nSize. Use
getNextGroupField iteratively to get the names of the second through eighth
group fields. Whenever getFirstGroupField is called, the next call to
getNextGroupField will return the name of the second group field. See
setGroupField for a discussion of the group field parameters. See getErrorInfo
for information about how to detect end-of-list.

Related Functions

getNextGroupField, setGroupField, getFirstSortField, getNextSortField,
setSortField

Example

To get the names of the group fields for the report whose handle is hRpt:

{

char *g[8];

char g1[80], g2[80], g3[80], g4[80], g5[80], g6[80], g7[80], g8[80];

int i;

g[0] = g1; g[1] = g2; g[2] = g3; g[3] = g4;

g[4] = g5; g[5] = g6; g[6] = g7; g[7] = g8;

getFirstGroupField (hRpt, (LPSTR)g1, 80);

for (i = 1; i < 8; i++)

getNextGroupField (hRpt, (LPSTR)(g[i]), 80);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 115

getFirstRelationInfo

BOOL FAR PASCAL getFirstRelationInfo (int hReport, LPSTR lpszFilePath, int

fSize,

LPSTR lpszIndexPath, int iSize, LPSTR lpszTag, int tSize, LPSTR lpszAlias,

int aSize);

hReport Report handle.

lpszFilePath Related-filename buffer.

fSize Size of lpszFilePath buffer.

lpszIndexPath Index-name buffer.

iSize Size of lpszIndexPath buffer.

lpszTag Tag-name buffer.

tSize Size of lpszTag buffer.

lpszAlias Alias buffer.

aSize Size of lpszAlias buffer.

Return Value

The getFirstRelationInfo function returns zero if an error occurs. To obtain
more information about the error use getErrorInfo.

Description

Use getFirstRelationInfo to obtain information about the "first" related table in
the report specified by hReport. getFirstRelationInfo returns the related
table’s name in the buffer pointed to by lpszFilePath to the extent allowed by
fSize; the index and index tag, if any, used in the relation in the buffers pointed
to by lpszIndexPath and lpszTag to the extent allowed by iSize and tSize; and
the alias of the related table in the buffer pointed to by lpszAlias to the extent
allowed by aSize. Use getNextRelationInfo in a loop to obtain equivalent
information about the rest of the related tables. See getErrorInfo for
information about how to detect end-of-list.

Related Functions

getNextRelationInfo, setRelationInfo, getMasterTableName,
getMasterIndexInfo

Example

To get information about the first related table in the report whose handle is
hRpt:

{

char table[80];

char index[80];

char tag[20];

char alias[10];

getFirstRelationInfo (hRpt, (LPSTR)table, 80, (LPSTR)index, 80,

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 116

(LPSTR)tag, 20, (LPSTR)alias, 10);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 117

getFirstSortField

BOOL FAR PASCAL getFirstSortField (int hReport, LPSTR lpszName, int

nSize);

hReport Report handle.

lpszName Sort-field-name buffer.

nSize Size of lpszName buffer.

Return Value

The getFirstSortField function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getFirstSortField and getNextSortField to obtain the current values of
the "sort field" parameters in the report specified by hReport. getFirstSortField
returns the name and direction of the first sort field in the buffer pointed to by
lpszName, to the extent allowed by nSize. Use getNextSortField iteratively to
get the names and directions of the second through eighth sort fields. Whenever
getFirstSortField is called, the next call to getNextSortField will return the
name of the second sort field. See setSortField for a discussion of the sort field
parameters and a description of the syntax of lpszName. See getErrorInfo for
information about how to detect end-of-list.

Related Functions

getNextSortField, setSortField, getFirstGroupField, getNextGroupField,
setGroupField

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 118

Example

To get the names of the sort fields for the report whose handle is hRpt:

{

char *s[8];

char s1[80], s2[80], s3[80], s4[80], s5[80], s6[80], s7[80], s8[80];

int i;

s[0] = s1; s[1] = s2; s[2] = s3; s[3] = s4;

s[4] = s5; s[5] = s6; s[6] = s7; s[7] = s8;

getFirstSortField (hRpt, (LPSTR)s1, 80);

for (i = 1; i < 8; i++)

getNextSortField (hRpt, (LPSTR)(s[i]), 80);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 119

getFirstUserParam

BOOL FAR PASCAL getFirstUserParam (int hReport, LPSTR lpszName, int

nSize,
LPSTR lpszValue, int vSize);

hReport Report handle.

lpszName Parameter-name buffer.

nSize Size of lpszName buffer.

lpszValue Parameter-value buffer.

vSize Size of lpszValue buffer.

Return Value

The getFirstUserParam function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getFirstUserParam to get the name and current value, if any, of the first
user parameter for the report specified by hReport. The name of the user
parameter is returned in the buffer pointed to by lpszName to the extent allowed
by nSize. The current value, if any, is returned in the buffer pointed to by
lpszValue to the extent allowed by vSize. Use getNextUserParam in a loop to
get the names and values of the other user parameters. Use setUserParam to
give a user parameter a value. See setUserParam for a further discussion of
user parameters. See getErrorInfo for information about how to detect end-of-
list.

Related Functions

getNextUserParam, setUserParam

Example

To get the name and value for the first user parameter for the report whose
handle is hRpt:

{

char param[40], value[100];

getFirstUserParam (hRpt, (LPSTR)param, 40, (LPSTR)value, 100);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 120

getHighScope

BOOL FAR PASCAL getHighScope (int hReport, LPSTR lpszScope, int size);

hReport Report handle.

lpszScope High-scope buffer.

size Size of lpszScope buffer.

Return Value

The getHighScope function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getHighScope to obtain the current value of the "high scope" parameter for
the report specified by hReport. getHighScope returns the current value as a
character string in the buffer pointed to by lpszScope to the extent allowed by
size. In conjunction with the "low scope" and "scope usage" parameters, this
parameter can be used to specify the range of master-file records used in
printing the report. See setScopeUsage for details of how setHighScope,
setLowScope, and setScopeUsage interact in providing this capability.

Related Functions

setHighScope, getLowScope, setLowScope, getScopeUsage,
setScopeUsage

Example

To get the current scope values for the report whose handle is hRpt:

{

char hi[100], lo[100];

getHighScope (hRpt, (LPSTR)hi, 100);

getLowScope (hRpt, (LPSTR)lo, 100);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 121

getLibrary

BOOL FAR PASCAL getLibrary (int hReport, LPSTR lpszName, int size);

hReport Report handle.

lpszName Library-name buffer.

size Size of lpszName buffer.

Return Value

The getLibrary function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getLibrary to obtain the current value of the report-library parameter for
the report specified by hReport. getLibrary returns the library name in the
buffer pointed to by lpszName to the extent allowed by size. See setLibrary for
a discussion of this parameter.

Related Functions

setLibrary

Example

To get the name of the report library for the report whose handle is hRpt:

{

getLibrary (hRpt, (LPSTR)lib, 80);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 122

getLowScope

BOOL FAR PASCAL getLowScope (int hReport, LPSTR lpszScope, int size);

hReport Report handle.

lpszScope Low-scope buffer.

size Size of lpszScope buffer.

Return Value

The getLowScope function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getLowScope to obtain the current value of the "low scope" parameter for
the report specified by hReport. getLowScope returns the current value as a
character string in the buffer pointed to by lpszScope to the extent allowed by
size. In conjunction with the "high scope" and "scope usage" parameters, this
parameter can be used to specify the range of master-file records used in
printing the report. See setScopeUsage for details of how setHighScope,
setLowScope, and setScopeUsage interact in providing this capability.

Related Functions

setLowScope, getHighScope, setHighScope, getScopeUsage,
setScopeUsage

Example

To get the current scope values for the report whose handle is hRpt:

{

char hi[100], lo[100];

getHighScope (hRpt, (LPSTR)hi, 100);

getLowScope (hRpt, (LPSTR)lo, 100);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 123

getMasterIndexInfo

BOOL FAR PASCAL getMasterIndexInfo (int hReport, LPSTR lpszPath, int

pSize,
LPSTR lpszType, LPSTR lpszTag, int tagSize);

hReport Report handle.

lpszPath Index-name buffer.

pSize Size of lpszPath buffer.

lpszType Data-type buffer.

lpszTag Tag-name buffer.

tagSize Size of lpszTag buffer.

Return Value

The getMasterIndexInfo function returns zero if an error occurs. To obtain

more information about the error use getErrorInfo.

Description

Use getMasterIndexInfo to obtain the current values of the parameters
relating to the master index for the report specified by hReport.
getMasterIndexInfo returns the current value of the index file’s path and
name in the buffer pointed to by lpszPath to the extent allowed by pSize; the
current value of the index file’s data type in the buffer pointed to by lpszType;
and the current value of the index file’s tag in the buffer pointed to by lpszTag to
the extent allowed by tagSize. The value returned in lpszType is always a single
character. See setMasterIndexInfo for further details.

Related Functions

setMasterIndexInfo, setScopeUsage, setLowScope, setHighScope

Example

To get information about the master index for the report whose handle is hRpt:

{

char path[80], tag[20];

char type[2];

getMasterIndexInfo (hRpt, (LPSTR)path, 100, (LPSTR)type,

(LPSTR)tag, 20);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 124

getMasterTableName

BOOL FAR PASCAL getMasterTableName (int hReport, LPSTR lpszPath, int

pSize);

hReport Report handle.

lpszPath Filename buffer.

pSize Size of lpszPath buffer.

Return Value

The getMasterTableName function returns zero if an error occurs. To obtain

more information about the error use getErrorInfo.

Description

Use getMasterTableName to obtain the current master table name for the
report specified by hReport. The name is returned in the buffer pointed to by
lpszPath to the extent allowed by pSize.

Related Functions

setMasterTableName

Example

To get the name of the master table for the report whose handle is hRpt:

{

char table[80];

getMasterTableName (hRpt, (LPSTR)table, 80);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 125

getMemoName

BOOL FAR PASCAL getMemoName (int hReport, LPSTR lpszPath, int pSize);

hReport Report handle.

lpszPath Filename buffer.

pSize Size of lpszPath buffer.

Return Value

The getMemoName function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getMemoName to obtain the current ASCII memo filename for the report
specified by hReport. The name is returned in the buffer pointed to by lpszPath
to the extent allowed by pSize.

Related Functions

setMemoName

Example

To get the name of the ASCII memo file for the report whose handle is hRpt:

{

char memo[80];

getMemoName (hRpt, (LPSTR)memo, 80);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 126

getNewReportHandle

int FAR PASCAL getNewReportHandle (LPSTR lpszAppName);

lpszAppName Name of calling application.

Return Value

The getNewReportHandle function returns a report-information handle if there
are no errors. A return value of zero indicates an error. To obtain more
information about the error use getErrorInfo with a handle of zero.

Description

Use getNewReportHandle to obtain the handle of an empty report-information
structure. The lpszAppName argument identifies the calling application. This
routine is most commonly used (instead of chooseReport or
getRuntimeRecord) when the user will be selecting a report at runtime. See
setReportPick for a discussion of selection of reports by the user at runtime.

Related Functions

chooseReport, getRuntimeRecord, setReportPick

Example

For a quick way to run a user-selected report without modification:

hRpt = getNewReportHandle((LPSTR)"Application Name"); // get a handle

setReportPick (hRpt, 'R'); // let user pick report

execRuntime (hRpt, 0, SW_SHOW, NULL, NULL, NULL, 0); // run it

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 127

getNextFieldName

BOOL FAR PASCAL getNextFieldName (int hReport, LPSTR lpszFieldName,
int fnSize);

hReport Report handle.

lpszFieldName Fieldname buffer.

fnSize Size of lpszFieldName buffer.

Return Value

The getNextFieldName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getNextFieldName in a loop to get the fieldnames available for use in the
report specified by hReport, after getting the first available fieldname with
getFirstFieldName. getNextFieldName returns the fieldname with alias
qualifier in the buffer pointed to by lpszFieldName to the extent allowed by
fnSize. See getErrorInfo for information about how to detect end-of-list.

Related Functions

getFirstFieldName, getNextFilteredFieldName

Example

See getFirstFieldName for an example of getNextFieldName.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 128

getNextFilteredFieldName

BOOL FAR PASCAL getNextFilteredFieldName (int hRepstf, LPSTR

lpszFieldName,
int fnSize, int filter);

hReport Report handle.

lpszFieldName Fieldname buffer.

fnSize Size of lpszFieldName buffer.

filter Filter ID.

Return Value

The getNextFilteredFieldName function returns zero if an error occurs. To
obtain more information about the error use getErrorInfo.

Description

Use getNextFilteredFieldName in a loop to get the fieldnames available for
use in the report specified by hReport suitable for use in the context specified by
filter, after getting the first such fieldname with getFirstFieldName.
getNextFieldName returns the filename with alias qualifier in the buffer
pointed to by lpszFieldName to the extent allowed by fnSize. See getErrorInfo
for information about how to detect end-of-list.

The filter argument specifies the context to be used in deciding which available
fields to return. The valid values for filter, defined in rreport.h, are
FILTER_ID_SORT and FILTER_ID_GROUP, which return fields suitable for use as
sort or group fields, respectively.

Related Functions

getFirstFilteredFieldName, getFirstFieldName, getNextFieldName

Example

See getFirstFieldName for an example of adding fieldnames to a combo box.
To modify that example to get suitable sort fields, simply change the function
names from getFirstFieldName and getNextFieldName to
getFirstFilteredFieldName and getNextFilterFieldName and add a new last
argument to both of FILTER_ID_SORT.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 129

getNextGroupField

BOOL FAR PASCAL getNextGroupField (int hReport, LPSTR lpszName, int

nSize);

hReport Report handle.

lpszName Group-field-name buffer.

nSize Size of lpszName buffer.

Return Value

The getNextGroupField function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getFirstGroupField and getNextGroupField to obtain the current values
of the "group field" parameters in the report specified by hReport.
getFirstGroupField returns the name of the first group field in the buffer
pointed to by lpszName, to the extent allowed by nSize. Use
getNextGroupField iteratively to get the names of the second through eighth
group fields. Whenever getFirstGroupField is called, the next call to
getNextGroupField will return the name of the second group field. See
getErrorInfo for information about how to detect end-of-list.

Related Functions

getFirstGroupField, setGroupField, getFirstSortField, getNextSortField,
setSortField

Example

See getFirstGroupField for an example of getNextGroupField.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 130

getNextRelationInfo

BOOL FAR PASCAL getNextRelationInfo (int hReport, LPSTR lpszFilePath,
int fSize,
LPSTR lpszIndexPath, int iSize, LPSTR lpszTag, int tSize, LPSTR lpszAlias,
int aSize);

hReport Report handle.

lpszFilePath Related-filename buffer.

fSize Size of lpszFilePath buffer.

lpszIndexPath Index-name buffer.

iSize Size of lpszIndexPath buffer.

lpszTag Tag-name buffer.

tSize Size of lpszTag buffer.

lpszAlias Alias buffer.

aSize Size of lpszAlias buffer.

Return Value

The getNextRelationInfo function returns zero if an error occurs. To obtain
more information about the error use getErrorInfo.

Description

Use getNextRelationInfo in a loop to obtain information about all related
tables but the "first" in the report specified by hReport. getNextRelationInfo
returns the related table’s name in the buffer pointed to by lpszFilePath to the
extent allowed by fSize; the index and index tag, if any, used in the relation in
the buffers pointed to by lpszIndexPath and lpszTag to the extent allowed by
iSize and tSize; and the alias of the related table in the buffer pointed to by
lpszAlias to the extent allowed by aSize. Use getFirstRelationInfo to obtain
equivalent information about the "first" of the related tables. See getErrorInfo
for information about how to detect end-of-list.

Related Functions

getFirstRelationInfo, setRelationInfo, getMasterTableName,
getMasterIndexInfo

Example

To get information about the next related table in the report whose handle is
hRpt:

{

char table[80];

char index[80];

char tag[20];

char alias[10];

getNextRelationInfo (hRpt, (LPSTR)table, 80, (LPSTR)index, 80,

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 131

(LPSTR)tag, 20, (LPSTR)alias, 10);

}

This would typically be used in a loop, following a call to getFirstRelationInfo.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 132

getNextSortField

BOOL FAR PASCAL getNextSortField (int hReport, LPSTR lpszName, int

nSize);

hReport Report handle.

lpszName Sort-field-name buffer.

nSize Size of lpszName buffer.

Return Value

The getNextSortField function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getFirstSortField and getNextSortField to obtain the current values of
the "sort field" parameters in the report specified by hReport. getFirstSortField
returns the name and direction of the first sort field in the buffer pointed to by
lpszName, to the extent allowed by nSize. Use getNextSortField iteratively to
get the names and directions of the second through eighth sort fields. Whenever
getFirstSortField is called, the next call to getNextSortField will return the
name of the second sort field. See setSortField for a discussion of the sort field
parameters and a description of the syntax of lpszName. See getErrorInfo for
information about how to detect end-of-list.

Related Functions

getFirstSortField, setSortField, getFirstGroupField, getNextGroupField,
setGroupField

Example

See getFirstSortField for an example of getNextSortField.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 133

getNextUserParam

BOOL FAR PASCAL getNextUserParam (int hReport, LPSTR lpszName, int

nSize,
LPSTR lpszValue, int vSize);

hReport Report handle.

lpszName Parameter-name buffer.

nSize Size of lpszName buffer.

lpszValue Parameter-value buffer.

vSize Size of lpszValue buffer.

Return Value

The getNextUserParam function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getNextUserParam in a loop to get the names and current values, if any,
of the all but the first user parameter for the report specified by hReport. The
name of the user parameter is returned in the buffer pointed to by lpszName to
the extent allowed by nSize. The current value, if any, is returned in the buffer
pointed to by lpszValue to the extent allowed by vSize. Use getFirstUserParam
to get the name and value of the first user parameter. Use setUserParam to
give a user parameter a value. See setUserParam for a further discussion of
user parameters. See getErrorInfo for information about how to detect end-of-
list.

Related Functions

getFirstUserParam, setUserParam

Example

To get the name and value for the next user parameter for the report whose
handle is hRpt:

{

char param[40], value[100];

getNextUserParam (hRpt, (LPSTR)param, 40, (LPSTR)value, 100);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 134

getOutputDest

BOOL FAR PASCAL getOutputDest (int hReport, LPSTR lpszDest, int dSize);

hReport Report handle.

lpszDest Output-destination buffer.

dSize Size of lpszDest buffer.

Return Value

The getOutputDest function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getOutputDest to obtain the current value of the "output destination"
parameter for the report specified by hReport. getOutputDest returns the value
in the buffer specified by lpszDest to the extent allowed by dSize. See
setOutputDest for a discussion of this parameter.

Related Functions

setOutputDest, getOutputFile, setOutputFile

Example

To get the current output-destination parameter for a report whose handle is
hRpt:

{

char dest[30];

getOutputDest (hRpt, (LPSTR)dest, 30);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 135

getOutputFile

BOOL FAR PASCAL getOutputFile (int hReport, LPSTR lpszName, int size);

hReport Report handle.

lpszName Output-filename buffer.

size Size of lpszName buffer.

Return Value

The getOutputFile function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getOutputFile to obtain the current value of the "output file" parameter for
the report specified by hReport. getOutputFile returns the value in the buffer
specified by lpszName to the extent allowed by size. See setOutputFile for a
discussion of this parameter.

Related Functions

setOutputFile, getOutputDest, setOutputDest

Example

To get the current output file for the report whose handle is hRpt:

{

char outfile[80];

getOutputFile (hRpt, (LPSTR)outfile, 80);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 136

getPreventEscape

BOOL FAR PASCAL getPreventEscape (int hReport, BOOL FAR * lpbNoEsc);

hReport Report handle.

lpbNoEsc Prevent-escape-flag buffer.

Return Value

The getPreventEscape function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getPreventEscape to obtain the current setting of the "prevent escape"
flag for the report specified by hReport. getPreventEscape returns this flag
value in the buffer pointed to by lpbNoEsc. See setPreventEscape for a
discussion of this flag.

Related Functions

setPreventEscape

Example

To get the prevent-escape flag for the report whose handle is hRpt:

{

BOOL noEscape;

getPreventEscape (hRpt, (BOOL FAR *)&noEscape);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 137

getPrinter

BOOL FAR PASCAL getPrinter (int hReport, LPSTR lpszPrinter, int size);

hReport Report handle.

lpszPrinter Printer-name buffer.

size Size of lpszPrinter buffer.

Return Value

The getPrinter function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getPrinter to obtain the current value of the "printer" parameter for the
report specified by hReport. getPrinter returns the value in the buffer pointed
to by lpszPrinter to the extent allowed by size. See setPrinter for a discussion
of this parameter.

Related Functions

setPrinter, getPrinterPort, setPrinterPort

Example

To get the current printer parameter for the report whose handle is hRpt:

{

char printer[100];

getPrinter (hRpt, (LPSTR)printer, 100);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 138

getPrinterPort

BOOL FAR PASCAL getPrinterPort (int hReport, LPSTR lpszPort, int size);

hReport Report handle.

lpszPort Printer-port-name buffer.

size Size of lpszPort buffer.

Return Value

The getPrinterPort function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getPrinterPort to obtain the current value of the "printer port" parameter
for the report specified by hReport. getPrinterPort returns the value in the
buffer pointed to by lpszPort to the extent allowed by size. See setPrinterPort
for a discussion of this parameter.

Related Functions

setPrinterPort, getPrinter, setPrinter

Example

To get the current printer-port parameter for the report whose handle is hRpt:

{

char port[10];

getPrinterPort (hRpt, (LPSTR)port, 10);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 139

getReportPick

BOOL FAR PASCAL getReportPick (int hReport, LPSTR lpszPickFlag);

hReport Report handle.

lpszPickFlag Report-selection-flag buffer.

Return Value

The getReportPick function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getReportPick to obtain the current value of the report-selection
parameter for the report specified by hReport. getReportPick returns the
current value of this parameter in the form of a single character in the buffer
pointed to by lpszPickFlag. See setReportPick for a discussion of this flag.

Related Functions

setReportPick

Example

To get the report-selection parameter for the report whose handle is hRpt:

{

char pick[2];

getReportPick (hRpt, (LPSTR)pick);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 140

getRuntimeRecord

int FAR PASCAL getRuntimeRecord (LPSTR lpszAppName, LPSTR

lpszControlFile);

lpszAppName Name of calling application.

lpszControlFile Pointer to ASCII runtime control filename.

Return Value

The getRuntimeRecord function returns a report-information handle if there
are no errors. A return value of zero indicates an error. To obtain more
information about the error use getErrorInfo with a report handle of zero.

Description

Use getRuntimeRecord to begin processing a report based on information in
the ASCII Viewer Control File whose name is pointed to by lpszControlFile. The
control file pointed to by lpszControlFile must contain a non-empty value for
RI_REPORT and may also contain a non-empty value for RI_LIBRARY. If both are
non-empty, RI_LIBRARY is treated as the name of a report library and
RI_REPORT is treated as the name of a report within that library. If only
RI_REPORT is non-empty, it is treated as the name of a report file. The
lpszAppName argument identifies the calling application. The handle returned by
getRuntimeRecord is used as input to most other functions contained within
this API.

Related Functions

chooseReport, getNewReportHandle, writeRuntimeRecord

Example

To read an existing ASCII Viewer Control File, modify some parameters, and
then save the results in the same file:

{

int hRpt;

if (hRpt = getRuntimeRecord ((LPSTR)"App Name",

(LPSTR)"c:\\rrdata\\runrecd"))

{

setScopeUsage (hRpt, 'E');

setFilterUsage (hRpt, 'E');

writeRuntimeRecord (hRpt, NULL);

}

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 141

getScopeUsage

BOOL FAR PASCAL getScopeUsage (int hReport, LPSTR lpszScopeFlag);

hReport Report handle.

lpszScopeFlag Scope-usage-flag buffer.

Return Value

The getScopeUsage function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getScopeUsage to obtain the current value of the "scope usage" parameter
for the report specified by hReport. getScopeUsage returns the current value of
this parameter in the form of a single character in the buffer pointed to by
lpszScopeFlag. See setScopeUsage for a discussion of scope-usage values and
the interaction among values set by setScopeUsage, setLowScope, and
setHighScope.

Related Functions

setScopeUsage, getLowScope, setLowScope, getHighScope,
setHighScope

Example

To read the scope-usage flag for the report whose handle is hRpt:

{

char scopeUsage[2];

getScopeUsage (hRpt, (LPSTR)scopeUsage);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 142

getStatusEveryPage

BOOL FAR PASCAL getStatusEveryPage (int hReport, BOOL FAR *

lpbStatus);

hReport Report handle.

lpbStatus Status-frequency buffer.

Return Value

The getStatusEveryPage function returns zero if an error occurs. To obtain

more information about the error use getErrorInfo.

Description

Use getStatusEveryPage to obtain the current value of the "status every page"
parameter for the report specified by hReport. getStatusEveryPage returns the
current value of this parameter in the form of a boolean in the buffer pointed to
by lpbStatus. See setStatusEveryPage for a further description of this
parameter.

Related Functions

setStatusEveryPage

Example

To get the status-every-page flag for the report whose handle is hRpt:

{

BOOL pageStatus;

getStatusEveryPage (hRpt, (BOOL FAR *)&pageStatus);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 143

getTestPattern

BOOL FAR PASCAL getTestPattern (int hReport, BOOL FAR * lpbTest);

hReport Report handle.

lpbTest Test-pattern-flag buffer.

Return Value

The getTestPattern function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getTestPattern to obtain the current value of the "test pattern" parameter
for the report specified by hReport. getTestPattern returns the current value of
this parameter in the form of a boolean in the buffer pointed to by lpbTest. See
setTestPattern for a further description of this parameter.

Related Functions

setTestPattern

Example

To get the test-pattern flag for the report whose handle is hRpt:

{

BOOL test;

getTestPattern (hRpt, (BOOL FAR *)&test);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 144

getWinTitle

BOOL FAR PASCAL getWinTitle (int hReport, LPSTR lpszTitle, int size);

hReport Report handle.

lpszTitle Report-title buffer.

size Size of lpszTitle buffer.

Return Value

The getWinTitle function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use getWinTitle to obtain the current value of the "report title" parameter for
the report specified by hReport. getWinTitle returns the title in the buffer
pointed to by lpszTitle to the extent allowed by size. See setWinTitle for a
discussion of the report title parameter.

Related Functions

setWinTitle

Example

To get the current report-title string for the report whose handle is hRpt:

{

char title[100];

getWinTitle (hRpt, (LPSTR)title, 100);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 145

resetErrorInfo

BOOL FAR PASCAL resetErrorInfo (int hReport);

Return Value

The resetErrorInfo function always returns non-zero.

Description

Use resetErrorInfo to force the runtime DLL to reset its error information
variables for the report indicated by hReport. The error message and code
returned by getErrorInfo always pertain to calls made since the last call to
resetErrorInfo for the specified report.

Related Functions

getErrorInfo

Example

To reset the error information:

resetErrorInfo();

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 146

setBeginPage

BOOL FAR PASCAL setBeginPage (int hReport, LONG lBeginPage);

hReport Report handle.

lBeginPage Starting page number.

Return Value

The setBeginPage function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setBeginPage to replace the current value of the "starting page" parameter
for the report specified by hReport with the value specified by lBeginPage. The
"starting page" parameter can be used to override the starting page number
saved with the report. One application for this parameter is for restarting a
canceled report without reprinting the parts that were already printed. See
execRuntime for a discussion of how to restart a partially printed report. Be
sure that the value specified with setBeginPage is no larger than the one
specified with setEndPage.

Related Functions

getBeginPage, setEndPage, getEndPage, setStatusEveryPage,
execRuntime

Example

To print pages 10 to 15 of the report whose handle is hRpt:

setBeginPage (hRpt, 10L);

setEndPage (hRpt, 15L);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 147

setCopies

BOOL FAR PASCAL setCopies (int hReport, int copies);

hReport Report handle.

copies Number of copies.

Return Value

The setCopies function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setCopies to replace the current value of the "number of copies" parameter
for the report specified by hReport with the value specified by copies. The
specified value must be between 0 and 999, inclusive. A value of 0 causes
Viewer to revert to the number of copies saved with the report.

Related Functions

getCopies

Example

To set the number of copies for the report whose handle is hRpt to 2:

setCopies (hRpt, 2);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 148

setDataDir

BOOL FAR PASCAL setDataDir (int hReport, LPSTR lpszDir);

hReport Report handle.

lpszDir Default data directory.

Return Value

The setDataDir function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setDataDir to replace the default data directory specified in RRW.INI with
the value specified by lpszDir, for the report specified by hReport. Viewer may
use the default data directory in trying to locate tables used in the report
specified by hReport.

Related Functions

setImageDir, setLibraryDir

Example

To specify the use of c:\rrdata as the default data directory for the report whose
handle is hRpt:

setDataDir (hRpt, (LPSTR)"c:\\rrdata");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 149

setDisplayErrors

BOOL FAR PASCAL setDisplayErrors (int hReport, BOOL bDisperr);

hReport Report handle.

bDisperr Display-errors flag.

Return Value

The setDisplayErrors function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setDisplayErrors to replace the current value of the "display errors" flag
for the report specified by hReport with the value specified by bDisperr. If the
"display errors" flag is non-zero, error messages will be displayed on the screen,
in addition to being returned to the calling application; otherwise, error
messages are only returned to the calling application. Error messages are
returned to the calling application via the lpszEMsg buffer supplied to
execRuntime or via the RO_EMSG field in the Viewer Status File, depending on
the value of bWait passed to execRuntime. By default, error messages are not
displayed on the screen.

Related Functions

getDisplayErrors, execRuntime

Example

To specify that, for the report whose handle is hRpt, Viewer should display errors
as well as return them:

setDisplayErrors (hRpt, 1);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 150

setDisplayStatus

BOOL FAR PASCAL setDisplayStatus (int hReport, BOOL bDispStatus);

hReport Report handle.

bDispstatus Display-status flag.

Return Value

The setDisplayStatus function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setDisplayStatus to replace the current value of the "display status" flag
for the report specified by hReport with the value specified by bDispStatus. If the
"display status" flag is non-zero, a status window is displayed while the report is
being generated; otherwise it will display an icon while it is running. By default,
status is not displayed. If "display status" is non-zero and the "prevent escape"
flag is zero, the status window will contain a Cancel button that will allow the
user to terminate a report in progress.

Related Functions

getDisplayStatus, setPreventEscape, getPreventEscape

Example

To specify that, for the report whose handle is hRpt, Viewer should display a

status window, and that the window should include a Cancel button:

setDisplayStatus (hRpt, 1); // display a status window...

setPreventEscape (hRpt, 0); // ... with a Cancel button

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 151

setEndPage

BOOL FAR PASCAL setEndPage (int hReport, LONG lEndPage);

hReport Report handle.

lEndPage Ending page number.

Return Value

The setEndPage function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setEndPage to replace the current value of the "ending page" parameter
for the report specified by hReport with the value specified by lEndPage. The
"ending page" parameter can be used to override the ending page number saved
with the report. Be sure that the value specified by setEndPage is at least as
large as the value specified by setBeginPage.

Related Functions

getEndPage, setBeginPage, getBeginPage

Example

To print pages 10 to 15 of the report whose handle is hRpt:

setBeginPage (hRpt, 10L);

setEndPage (hRpt, 15L);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 152

setExportDest

BOOL FAR PASCAL setExportDest (int hReport, char cVal);

hReport Report handle.

cVal Export-destination flag.

Return Value

The setExportDest function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setExportDest to replace the current value of the "export destination"
parameter for the report specified by hReport with the value specified by cVal.
The export destination is used to specify how the results of an Excel Chart or
Excel PivotTable export are to be presented. Valid values for this parameter are:

� D (Display) means to present the results of the PivotTable or
Chart export on the display from within Excel.

� F (File) means to save the PivotTable or Chart export to the file
specified by setOutputFile.

� P (Printer) means to print the PivotTable or Chart to Excel’s
default printer.

Related Functions

getExportDest, setOutputFile

Example

To indicate that the PivotTable or Chart report whose handle is hRpt should be
displayed by Excel:

setExportDest (hRpt, ’D’);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 153

setFilter

BOOL FAR PASCAL setFilter (int hReport, LPSTR lpszFilter);

hReport Report handle.

lpszFilter Filter expression.

Return Value

The setFilter function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setFilter to specify a filter expression, lpszFilter, that may be used instead
of the filter, if any, saved with the report specified by hReport. Viewer will use
this filter expression only if you also call setFilterUsage with a value of O. See
setFilterUsage for details of this behavior. A filter expression must use the
same syntax as that of a calculated field expression that returns a logical value.
The expression can include any database, calculated, or total fields available in
the report, along with built-in function references, constants, and UDF
references. When Viewer uses the expression specified via setFilter, it will
include only those records where the value of the expression is true. The
maximum size of a filter expression is 1024.

Related Functions

setFilterUsage, getFilter, getFilterUsage

Example

To limit the data of the report whose handle is hRpt to those records where CITY
is Boston or Westborough and STATE is MA:

setFilter(hRpt, (LPSTR)"STATE='MA' AND

(CITY='Boston' OR CITY='Westborough')");

setFilterUsage (hRpt, 'O'); // override saved filter

Note the use of parentheses in the filter expression. Without the parentheses,
the filter would accept a CITY value of Westborough even if the STATE were not
MA, since RRW gives AND and OR equal precedence and evaluates them from left-
to-right.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 154

setFilterUsage

BOOL FAR PASCAL setFilterUsage (int hReport, char cVal);

hReport Report handle.

cVal Filter-usage flag.

Return Value

The setFilterUsage function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setFilterUsage to set the "filter usage" parameter for the report specified
by hReport to the value specified by cVal. Valid values for this parameter are:

D S (Saved) means to run the report using the filter saved with it, if

any. Viewer will ignore any expression specified via setFilter and run

the report exactly as it was saved.

D E (Entire) means to ignore any filter saved in the report or specified

via setFilter.

D O (Override) means to override the saved filter, if any, with the

expression specified via setFilter.

D ? (Question mark) means to allow the user to enter a filter or edit the

saved filter at runtime. If no filter was saved with the report, the
Insert Selection Rule dialog displays, as shown in Figure 3.1.

Figure 3.1 Insert Selection Rule Dialog Box

If a filter was saved with the report, the Query dialog box displays, as
shown in Figure 3.2.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 155

Figure 3.2 Query Dialog Box

When the filter-usage flag is a question mark (?), the value specified

via setFilter is always ignored.

Related Functions

setFilter, getFilter, getFilterUsage

Example

To allow the user to specify a filter at runtime for the report whose handle is
hRpt:

setFilterUsage (hRpt, '?');

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 156

setGroupField

BOOL FAR PASCAL setGroupField (int hReport, LPSTR lpszName, int

groupNum);

hReport Report handle.

lpszName Group-field name.

groupNum Group number.

Return Value

The setGroupField function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setGroupField to replace an existing group field or add a new one to the
report specified by hReport. Pass the group field number to be added or replaced
in groupNum and its name in lpszName. You must replace all group fields from
group field 1 through the last group field you wish to replace. For example, if you
only wish to replace group field 2, you must call setGroupField twice, once with
a groupNum of 1 and once with a groupNum of 2. To obtain the current group
field parameters, use getFirstGroupField and getNextGroupField.

Related Functions

getFirstGroupField, getNextGroupField, setSortField, getFirstSortField,
getNextSortField

Example

To replace the second group field with CITY, while leaving the first group field
unchanged for the report whose handle is hRpt:

{

char buf[80];

getFirstGroupField (hRpt, (LPSTR)buf, 80);

setGroupField (hRpt, (LPSTR)buf, 1);

setGroupField (hRpt, (LPSTR)"CITY", 2);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 157

setHighScope

BOOL FAR PASCAL setHighScope (int hReport, LPSTR lpszScope);

hReport Report handle.

lpszScope High-scope value.

Return Value

The setHighScope function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setHighScope to set the "high scope" parameter for the report specified by
hReport to the value specified by lpszScope. See setScopeUsage for details.

Related Functions

getHighScope, setLowScope, getLowScope, setScopeUsage,
getScopeUsage

Example

Assuming we have an index on the NAME field of the master table, to limit the
records from the master table to those where the NAME field begins with a letter
between A and M, inclusive, for the report whose handle is hRpt:

setScopeUsage (hRpt, 'O'); // override saved scope

setMasterIndexInfo (hRpt, (LPSTR)"c:\\data\\name.ndx", 'C', NULL);

setLowScope (hRpt, (LPSTR)"A");

setHighScope (hRpt, (LPSTR)"M");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 158

setImageDir

BOOL FAR PASCAL setImageDir (int hReport, LPSTR lpszDir);

hReport Report handle.

lpszDir Default image directory.

Return Value

The setImageDir function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setImageDir to replace the default image directory specified in RRW.INI
with the value specified by lpszDir, for the report specified by hReport. Viewer
may use the default image directory in trying to locate images used in the report
specified via hReport.

Related Functions

setDataDir, setLibraryDir

Example

To specify the use of c:\rrdata as the default image directory for the report
whose handle is hRpt:

setImageDir (hRpt, (LPSTR)"c:\\rrdata");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 159

setIndexExtension

BOOL FAR PASCAL setIndexExtension (int hReport, int extNumber);

hReport Report handle.

extNumber Extension index.

Return Value

The setIndexExtension function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setIndexExtension to replace the current value of the default-index-
extension parameter for the report specified by hReport with the value specified
by extNumber. The default index extension is used by the Viewer executable to
locate indexes that are specified without extensions or that it is unable to find
using the extensions saved with the report.

The possible values and meanings for extNumber are:

0 none

1 CDX

2 IDX

3 MDX

4 NDX

5 NSX

6 NTX

7 WDX

Related Functions

setMasterIndexInfo, setRelationInfo

Example

To set the default index extension for the report specified by hRpt to NDX:

setIndexExtension (hRpt, 4);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 160

setLibrary

BOOL FAR PASCAL setLibrary (int hReport, LPSTR lpszName);

hReport Report handle.

lpszName Library-name buffer.

Return Value

The setLibrary function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setLibrary to replace the current value of the report-library parameter for
the report specified by hReport with the value specified by lpszName. It is not
necessary to call setLibrary after obtaining a report handle with chooseReport
or getRuntimeRecord since both of these routines imply the selection of a
report library. This routine is primarily for use with getNewReportHandle and
setReportPick.

If lpszName does not include a path, the Viewer looks for the library in the
directory specified by setLibraryDir. If setLibraryDir has not been called, the
Viewer looks in the default report/library directory specified in RRW.INI. If no
default is specified in the INI file either, the Viewer looks for the library in the
current directory.

Related Functions

getLibrary, getNewReportHandle, setReportPick, setLibraryDir

Example

To specify the library c:\libs\acctrpts for a report-information handle obtained via
a call to getNewReportHandle, allowing the user to pick a single report to run:

{

char emsg[256];

int ecode; long

pgct;

int hRpt = getNewReportHandle();

if (hRpt)

{

if (setLibrary (hRpt, (LPSTR)"c:\\libs\\acctrpts"));

{

setReportPick (hRpt, 'R');

execRuntime (hRpt, 1, SW_SHOW, (LPINT)&ecode,

(LPLONG)&pgct, (LPSTR)emsg, 256);

}

else ... // error handling

}

else ... // error handling

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 161

setLibraryDir

BOOL FAR PASCAL setLibraryDir (int hReport, LPSTR lpszDir);

hReport Report handle.

lpszDir Default report or library directory.

Return Value

The setLibraryDir function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setLibraryDir to replace the default report/library directory specified in
RRW.INI with the value specified by lpszDir, for the report specified by hReport.
Viewer may use the default report/library directory in trying to locate the library
or report specified via setLibrary or chooseReport, or implicitly via
getRuntimeRecord.

Related Functions

setDataDir, setImageDir, setLibrary, chooseReport, getRuntimeRecord

Example

To specify the use of c:\rrdata as the default library directory for the report
whose handle is hRpt:

setLibraryDir (hRpt, (LPSTR)"c:\\rrdata");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 162

setLowScope

BOOL FAR PASCAL setLowScope (int hReport, LPSTR lpszScope);

hReport Report handle.

lpszScope Low-scope value.

Return Value

The setLowScope function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setLowScope to set the "low scope" parameter for the report specified by
hReport to the value specified by lpszScope. See setScopeUsage for details.

Related Functions

getLowScope, setHighScope, getHighScope, setScopeUsage,
getScopeUsage

Example

Assuming we have an index on the NAME field of the master table, to limit the
records from the master table to those where the NAME field begins with a letter
between A and M, inclusive, for the report whose handle is hRpt:

setScopeUsage (hRpt, 'O'); // override saved scope

setMasterIndexInfo (hRpt, (LPSTR)"c:\\data\\name.ndx", 'C', NULL);

setLowScope (hRpt, (LPSTR)"A");

setHighScope (hRpt, (LPSTR)"M");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 163

setMasterIndexInfo

BOOL FAR PASCAL setMasterIndexInfo (int hReport, LPSTR lpszPath, char

cType, LPSTR lpszTag);

hReport Report handle.

lpszPath Index-name buffer.

cType Data type.

lpszTag Tag-name buffer.

Return Value

The setMasterIndexInfo function returns zero if an error occurs. To obtain

more information about the error use getErrorInfo.

Description

Use setMasterIndexInfo to set the master index parameters for the report
specified by hReport. Use lpszPath to specify the path and/or filename of a
master index; cType to indicate the data type of the index; and lpszTag to
specify the master index tag. For lpszPath:

� If you specify both a directory and a file name, this directory is
the only directory searched and this file name is the only file the
Viewer searches for.

� If you specify a directory without a file name, the Viewer
searches the specified directory for the master index name
saved with the report.

� If you specify a file name without a directory, the Viewer
searches for a file with the specified name in the directory of the
master index saved with the report, then in the current master
database directory, then in the default data directory specified via
setDataDir or in RRW.INI. If no default is specified, the Viewer
searches for the file in the current directory.

� If lpszPath is NULL or points to a null string, the Viewer will use
the saved index unless cType is R, in which case you are
removing a master index saved with the report.

The cType argument specifies the data type of the new index, where N indicates
numeric, D indicates date, and C indicates character. If cType is a space
character, Viewer will assume that the new index has the same data type as the
saved master index, though it is good practice to include an explicit data type
specifier. If the index named by lpszPath is a multiple-field index file (MDX, CDX,
or WDX), lpszTag specifies an index tag.

You can also use setMasterIndexInfo to remove a master index saved with a
report, by specifying lpszPath and lpszTag as NULL (or the null string), and
specifying cType as R.

Related Functions

getMasterIndexInfo, setMasterTableName, getMasterTableName

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 164

Example

To specify the use of the date tag HIREDATE of the index C:\DATA\EMPLOY.MDX

for the report whose handle is hRpt:

setMasterIndexInfo (hRpt, (LPSTR)"c:\\data\\employ.mdx", 'D',

(LPSTR)"HIREDATE");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 165

setMasterTableName

BOOL FAR PASCAL setMasterTableName (int hReport, LPSTR lpszTable);

hReport Report handle.

lpszTable Name buffer.

Return Value

The setMasterTableName function returns zero if an error occurs. To obtain

more information about the error use getErrorInfo.

Description

Use setMasterTableName to replace the master table saved with the report
specified by hReport with the master table specified by lpszTable. The fields in
the master table specified by lpszTable must match in name, number, and type
those in the original master table.

Example

To specify the use of the table C:\DATA\EMPLOY.DBF, for the report whose
handle is hRpt:

setMasterTableName (hRpt, (LPSTR)"c:\\data\\employ.dbf");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 166

setMemoName

BOOL FAR PASCAL setMemoName (int hReport, LPSTR lpszPath);

hReport Report handle.

lpszPath Pathname buffer.

Return Value

The setMemoName function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setMemoName to replace the ASCII memo file used in the report specified
by hReport with the file specified by lpszPath.

� If lpszPath specifies both a directory and a table name, this
directory is the only directory searched and this file name is the
only file the Viewer searches for.

� If lpszPath specifies a directory without a file name, the Viewer
searches the specified directory for the ASCII memo file name
saved with the report.

� If lpszPath specifies a file name without a directory, the Viewer
searches for a file with the specified name in the directory of the
ASCII memo file saved with the report, then in the default data
directory specified via setDataDir or in RRW.INI. If no default is
specified via setDataDir, the Viewer searches for the specified
table in the current directory.

Related Functions

getMemoName

Example

To specify the use of the ASCII memo file, C:\DATA\LETTER.TXT for the report
whose handle is hRpt:

setMemoName (hRpt, (LPSTR)"c:\\data\\letter.txt");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 167

setOutputDest

BOOL FAR PASCAL setOutputDest (int hReport, LPSTR lpszDest);

hReport Report handle.

lpszDest Output destination buffer.

Return Value

The setOutputDest function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setOutputDest to replace the current value of the "output destination"
parameter for the report specified by hReport. If you don’t call setOutputDest,
Viewer will print to the destination saved with the report (or to the printer
specified via setPrinter function). This parameter can have one of the following
values: D, A, T, P, Excel Chart, Excel PivotTable, CSV, MSWORD, RTF, W,
X, H, V, or a question mark (?).

� A value of D specifies that the report be sent to the display,
allowing the user to preview the report before printing it. After
previewing the report, the user can select Print on the Preview
screen to send the report to the printer saved with the report
or specified via the setPrinter function. Note that if the value
of lpszDest is D and a filename has been specified via
setOutputFile, the report will be output to the file specified
via setOutputFile when the user selects Print in Preview.

� A value of A or T specifies that the report be sent to the text
file named via the setOutputFile function. The report will be
exported as a text file without printer codes.

� A value of P specifies that the report be sent to the printer
saved with the report or specified via setPrinter, even if the
report’s saved destination is a file.

� A value of Excel Chart or Excel PivotTable specifies that the
report be exported to an Excel chart or PivotTable, respectively.
You can use this in conjunction with setExportDest to control
the export destination (display, file, or printer).

� A value of CSV, MSWORD, or RTF specifies that the report be
exported to a text data file, Word Merge file, or Rich Text
Format file, respectively, using either the saved file name or
the file name specified via setOutputFile.

� A value of W specifies that the report be exported to a
worksheet file whose name is specified via setOutputFile.

� A value of X specifies that the report be exported to an Xbase
file whose name is specified via setOutputFile.

� A value of H specifies that the report be exported to an HTML
file whose name is specified via setOutputFile.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 168

� A value of V specifies that the report be exported to an
ActiveX PDI file whose name is specified via setOutputFile.

� A value of question mark (?) allows the user to select the print
destination (screen or printer) at runtime. When the value of
lpszDest is a question mark, the user will see the dialog box
shown in Figure 3.3. If a title has been specified via
setWinTitle, the title bar will contain that title; otherwise, the
title bar will contain the report name.

Figure 3.3 Report Destination Dialog Box

The user can select Screen to preview the report, Printer to print it,
or Export to export it to one of the available export types (Excel
PivotTable, Excel Chart, Rich Text Format, Text, Text Data, Word

Merge, HTML, ActiveX PDI, Xbase, or Worksheet). If the user selects
Cancel, the report will not run and the "Canceled" message will be
returned as report status.

If you call neither setOutputDest nor setOutputFile, the Viewer outputs the
report to the printer saved with the report or specified via setPrinter. If you call
setOutputFile but not setOutputDest, the Viewer outputs the report to the
specified file with printer codes for the printer saved with the report or specified
via setPrinter.

Related Functions

getOutputDest, setOutputFile, getOutputFile, setPrinter, getPrinter

Example

To specify the display as the output destination for the report whose handle is
hRpt:

setOutputDest (hRpt, "D");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 169

setOutputFile

BOOL FAR PASCAL setOutputFile (int hReport, LPSTR lpszName);

hReport Report handle.

lpszName Output filename.

Return Value

The setOutputFile function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setOutputFile to replace the current value of the "output file" parameter for
the report specified by hReport with the value specified by lpszName. Use it
to save report output as a file for printing later, or use it in conjunction with
setOutputDest to export a report to a file. When this parameter is specified and
setOutputDest has not been called or has been used to specify a value of D or
question mark (?), the report will be output to a file with printer codes. When
this parameter is specified and setOutputDest has been used to specify a value
of A, the report will be output as a text file without printer codes. To send the
report directly to the saved destination, do not call setOutputFile or
setOutputDest.

The name of the output file can include a path. For example, to send a report to
a text file INVOICE.TXT in the C:\PROJECT\TEXT subdirectory, specify the
following value for the lpszName parameter:

C:\PROJECT\TEXT\INVOICE.TXT

If lpszName does not include a path, the Viewer places the file in the current

directory.

Related Functions

getOutputFile, setOutputDest, getOutputDest

Example

To specify C:\TEMP\REPORT.TXT as the output file for the report whose handle is
hRpt:

setOutputFile (hRpt, (LPSTR)"c:\\temp\\report.txt");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 170

setPreventEscape

BOOL FAR PASCAL setPreventEscape (int hReport, BOOL bNoEsc);

hReport Report handle.

bNoEsc Prevent-escape flag.

Return Value

The setPreventEscape function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setPreventEscape to specify whether or not the user should be able to
terminate the report specified by hReport. If bNoEsc is true, the user will not be
able to terminate the report while Viewer is generating it. A value of zero means
that a Cancel button will appear in the status window, enabling the user to pause
or cancel the report. Note that a status window will appear only if
setDisplayStatus has been called with a non-zero value. The default value of
the "prevent escape" flag is zero. If the user cancels the report, the error-code
value returned via lpiECode from execRuntime or as RO_ECODE in the runtime
status file will be C.

Related Functions

getPreventEscape, setDisplayStatus, getDisplayStatus, execRuntime

Example

To specify that, for the report whose handle is hRpt, Viewer should display a
status window and that the window should include a Cancel button:

setDisplayStatus (hRpt, 1); // display a status window...

setPreventEscape (hRpt, 0); // ... with a Cancel button

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 171

setPrinter

BOOL FAR PASCAL setPrinter (int hReport, LPSTR lpszPrinter);

hReport Report handle.

lpszPrinter Printer name.

Return Value

The setPrinter function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setPrinter to replace the current value of the "printer" parameter for the
report specified by hReport with the printer name specified by lpszPrinter. This
parameter can have one of these values:

� The name of an available Windows printer (for example, "HP
LaserJet Series III"). The value is case insensitive (that is, you
can enter it in upper, lower, or mixed case).

� The question mark (?) value, to allow the user to select a printer
at runtime. When the lpszPrinter value is a question mark, the
Print dialog will display, as shown in Figure 3.4.

� The word "Default" to force the Viewer to use the current default

Windows printer. Use this setting only if you are sure that the
default printer is compatible with the layout of your report(s)

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 172

Figure 3.4 Print Dialog Box

The Printers applet (accessible from the Windows Control Panel) controls which
printers are listed in the Print dialog box. Viewer initially selects the printer saved
with the report. The user can select another printer and port as necessary.

Related Functions

getPrinter, setPrinterPort, getPrinterPort, setOutputDest, getOutputDest

Example

To allow the user to select a printer interactively in Viewer for the report whose
handle is hRpt:

setPrinter (hRpt, (LPSTR)"?");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 173

setPrinterPort

BOOL FAR PASCAL setPrinterPort (int hReport, LPSTR lpszPort);

hReport Report handle.

lpszPort Printer-port name.

Return Value

The setPrinterPort function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setPrinterPort to replace the value of the "printer port" parameter for the
report specified by hReport with the value specified by lpszPort. Enter a value
such as "LPT1:" to override the current printer port value. Note that the colon is
required.

You can also use the question mark (?) value or enter the word "Default" for this
parameter. When the value of lpszPort is a question mark, the user will see the
Print dialog box shown in Figure 3.4. When the value of lpszPort is "Default,"
Viewer will use the default Windows printer port. (See the description of the
setPrinter function.)

Related Functions

getPrinterPort, setPrinter, getPrinter, setOutputDest, getOutputDest

Example

To allow the user to select a printer interactively in Viewer for the report whose
handle is hRpt:

setPrinterPort (hRpt, (LPSTR)"?");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 174

setRelationInfo

BOOL FAR PASCAL setRelationInfo (int hReport, LPSTR lpszFilePath,
LPSTR lpszIndexPath, LPSTR lpszTag, LPSTR lpszAlias, int aliasNum);

hReport Report handle.

lpszFilePath Related file name.

lpszIndexPath Index file name.

lpszTag Tag name.

lpszAlias Alias.

aliasNum Relation-override number.

Return Value

The setRelationInfo function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setRelationInfo to replace the parameters of a related table in the report
specified by hReport. Use lpszFilePath to specify the new related filename,
lpszIndexPath and lpszTag to specify the index and index tag, if any, to be used
to access the new related file, and lpszAlias to specify the alias of the related file
being replaced. Any argument that is the NULL pointer signifies to leave that
particular relation information unchanged. Use an aliasNum between 1 and 99 to
identify which alias parameter is to be used for the replacement.

Related Functions

getFirstRelationInfo, getNextRelationInfo, setMasterTableName,
getMasterTableName

Example

Suppose the report specified by hReport includes a related file c:\data\fy93.dbf,
whose alias is fy and whose data is scanned via the month tag in the index
c:\data\fy93.mdx. If you wish to use setRelationInfo to replace fy93.dbf with
fy94.dbf and fy93.mdx with fy94.mdx, you might call setRelationInfo as
follows:

setRelationInfo (hReport, // report handle

(LPSTR)"c:\\data\\fy94", // dbf name

(LPSTR)"c:\\data\\fy94", // index name

(LPSTR)"", // tag

(LPSTR)"fy", // alias

1); // number

which uses an aliasNum of 1 to replace fy93 data with fy94 data. Note that the
lpszAlias value must match the alias of the related file as saved with the report—
"fy". Also, note that the lpszTag value is a null string, which indicates that the
saved tag is to be used. The aliasNum argument has no significance except to
give an ID to the relation override specification. If you later realized that you
should have used fy92 data, you would again call setRelationInfo using the

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 175

same aliasNum value of 1. To override the parameters of a different relation
without losing the fy override, use an aliasNum of 2 for the second override.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 176

setReportPick

BOOL FAR PASCAL setReportPick (int hReport, char cPickFlag);

hReport Report handle.

cPickFlag Report-selection-flag buffer.

Return Value

The setReportPick function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setReportPick to replace the current value of the report-selection flag for
the report specified by hReport to the value specified by cPickFlag. If the report-
selection flag is set to R, the Viewer will prompt the user to select a report from
the current report library. If the flag is set to ?, the Viewer will prompt the user
to select a succession of reports from the current report library. The current
report library is the library specified explicitly via setLibrary, or implicitly via
chooseReport or getRuntimeRecord.

Related Functions

getReportPick, chooseReport, getRuntimeRecord, setLibrary, getLibrary

Example

To allow the user to select a report interactively in Viewer for the report whose
handle is hRpt:

setReportPick (hRpt, 'R');

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 177

setScopeUsage

BOOL FAR PASCAL setScopeUsage (int hReport, char cScopeFlag);

hReport Report handle.

cScopeFlag Scope-usage flag.

Return Value

The setScopeUsage function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setScopeUsage to set the "scope usage" parameter for the report specified
by hReport to the value specified by cScopeFlag. Valid values for this parameter
are:

� S (Saved) means to use the scope values saved with the
report.

� E (Entire) means to ignore any scope values.

� O (Override) means to override the saved scope values with
the values specified via setLowScope and setHighScope. (Be
careful to use the letter O and not the digit zero.)

� Question mark (?) allows the user to enter or change scope
values.

� When the scope-usage parameter contains a question mark,
the dialog box shown in Figure 3.5 displays. If the window-title
parameter (set by setWinTitle) is specified, the title bar will
contain the that value. If the window-title parameter is blank
or has not been set, the title bar will contain the report name.

Figure 3.5 High and Low Scope Dialog Box

If the scope-usage parameter is O (Override), the low-scope parameter specifies
the starting value of the scope and high-scope parameter specifies the ending
value of the scope. If the scope-usage parameter is S, E, or ?, Viewer ignores
the low-scope and high-scope parameters.

Each scope parameter can contain either a record number or an index key value
up to 250 characters wide. If no master index was saved with the report (or
added using setMasterIndexInfo), the Viewer assumes the value is a record

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 178

number. Otherwise, Viewer assumes the value is a key value in the master
index. In this case, the report begins reading the master table at the first record
greater than or equal to the low-scope parameter and stops reading the master
table after the last record found that is less than or equal to the high-scope
parameter.

The range fully includes the end points. In other words, if you enter A as the low
value and M as the high value, Viewer reads the first record in which the value
begins with A through the last record in which the value begins with M. For
example, if you have a customer table indexed on last name and you want to
print invoices for all customers whose name begins with a letter between A and
M, call setScopeUsage with an lpszScopeFlag value of O, call setLowScope
with an lpszScope value of A, and call setHighScope with an lpszScope value of
M.

All scope parameters must be character strings. Note that a date scope value
must be in the format mm/dd/yy or mm/dd/yyyy. Do not enclose scope values
within quotes.

Related Functions

getScopeUsage, setMasterIndexInfo, getMasterIndexInfo

Example

Assuming we have an index on the NAME field of the master table, to limit the
records from the master table to those where the NAME field begins with a letter
between A and M, inclusive, for the report whose handle is hRpt:

setScopeUsage (hRpt, 'O'); // override saved scope

setMasterIndexInfo (hRpt, (LPSTR)"c:\\data\\name.ndx", 'C', NULL);

setLowScope (hRpt, (LPSTR)"A");

setHighScope (hRpt, (LPSTR)"M");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 179

setSortField

BOOL FAR PASCAL setSortField (int hReport, LPSTR lpszName, int sortNum);

hReport Report handle.

lpszName Sort-field-name buffer.

sortNum Sort-field number.

Return Value

The setSortField function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setSortField to replace an existing sort field or add a new one to the report
specified by hReport. Pass the sort field number to be added or replaced in
sortNum and its value in lpszName. The lpszName argument begins with a + or -
to indicate ascending or descending, respectively, followed by the name of the
sort field. You must replace all sort fields from sort field 1 through the last sort
field you wish to replace. For example, if you only wish to replace sort field 2,
you must call setSortField twice, once with a sortNum of 1 and once with a
sortNum of 2. To obtain the current sort field parameters, use getFirstSortField
and getNextSortField.

Related Functions

getFirstSortField, getNextSortField, setGroupField, getFirstGroupField,
getNextGroupField

Example

To replace the second sort field with CITY in ascending order, while leaving the

first sort field unchanged, for the report whose handle is hRpt:

{

char buf[80];

getFirstSortField (hRpt, (LPSTR)buf, 80);

setSortField (hRpt, (LPSTR)buf, 1);

setSortField (hRpt, (LPSTR)"+CITY", 2);

}

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 180

setStatusEveryPage

BOOL FAR PASCAL setStatusEveryPage (int hReport, BOOL bStatus);

hReport Report handle.

bStatus Status-frequency value.

Return Value

The setStatusEveryPage function returns zero if an error occurs. To obtain

more information about the error use getErrorInfo.

Description

Use setStatusEveryPage to specify a value for the "status every page"
parameter for the report specified by hReport. This parameter is meaningful only
when execRuntime is to be called with a value of zero for bWait, in which case
a status file will be generated. If bWait is non-zero, no runtime status file is
generated and status is returned to the calling application via execRuntime. If
bStatus is non-zero and a status file is being generated, the file will be updated
after each page of the report; otherwise, it will updated only at the end of the
report. When bStatus is non-zero, you can use the value of RO_PAGES in the
status file to restart a report at the point where abnormal termination occurred.
See execRuntime for more information on restarting reports.

Related Functions

getStatusEveryPage

Example

To specify that runtime status should be written after every page of the report
whose handle is hRpt:

setStatusEveryPage (hRpt, 1);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 181

setStatusFileName

BOOL FAR PASCAL setStatusFileName (int hReport, LPSTR lpszPath);

hReport Report handle.

lpszPath Status file name

Return Value

The setStatusFileName function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setStatusFileName to specify a status file name for the report specified by
hReport. A status file is created only if you call execRuntime with a bWait
parameter of 0. You can distinguish Viewer status tables by using the
setStatusFileName to specify the directory in which the file will be created
and/or to specify the complete status file name.

To specify the directory in which a status table should be created, specify a full
path and name. If you specify a path without a table name, the Viewer
executable will create a file named RRUNOUT.DBF in the specified directory. If
you specify a filename without a path, the specified file will be created in the
current directory.

Example

To cause the Viewer executable to create a status file named
C:\TEMP\RUNSTATS.DBF for the report specified by hRpt:

setStatusFileName (hRpt, "c:\\temp\\runstats.dbf");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 182

setSuppressTitle

BOOL FAR PASCAL setSuppressTitle (int hReport, BOOL bValue);

hReport Report handle.

bValue Suppress-title flag.

Return Value

The setSuppressTitle function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setSuppressTitle to set the "suppress title and summary areas" flag for the
report specified by hReport. If the value of bValue is non-zero, Viewer will not
output No records found title band lines for reports which contain no records;

Example

To suppress the printing of No Records found title band lines if the report
specified by hRpt contains no records:

setSuppressTitle (hRpt, 1);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 183

setTestPattern

BOOL FAR PASCAL setTestPattern (int hReport, BOOL bTest);

hReport Report handle.

bTest Test-pattern flag.

Return Value

The setTestPattern function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setTestPattern to set the "test pattern" flag for the report specified by
hReport. If the value of bTest is non-zero, Viewer will display a dialog allowing
the user to print a test pattern before printing the report. The dialog will contain
OK, Cancel, and Print buttons. The user can select OK to print a test pattern as
many times as necessary to align forms in the printer, and then select Print to
print the report. A test pattern includes only page header, record, and page
footer lines.

Related Functions

getTestPattern

Example

To specify that the user should be permitted to print one or more test patterns
before printing the report whose handle is hRpt:

setTestPattern (hRpt, 1);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 184

setUserParam

BOOL FAR PASCAL SetUserParam (int hReport, LPSTR lpszName, LPSTR

lpszValue);

hReport Report handle.

lpszName Parameter-name buffer.

lpszValue Parameter-value buffer.

Return Value

The setUserParam function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setUserParam to give the value specified by lpszValue to the user
parameter whose name is specified by lpszName for the report specified by
hReport.

When the Viewer is called directly using a Control File, a user parameter is a
control-file field that is not defined by R&R. The value of a user parameter is
obtained within a report via the RIPARAM function. When the Viewer is called via
the Viewer DLL, the DLL deduces the names of the user parameters by searching
all calculated fields for uses of the RIPARAM function. The order in which
getFirstUserParam and getNextUserParam return user parameters is not
significant. A given user parameter will only have a current value if
setUserParam has previously been called for that parameter. All user
parameters must be of data type character. You can use conversion functions
such as CTOD() and VAL() to convert to other data types for use in
calculations.

You can control some features of the layout and content of reports at runtime by
prompting users to enter values for parameters, then passing the values to
reports. Typically, you prompt the user for a text string or other data item that is
not stored in the database. For example, you might prompt the user for his or
her name and use the name in a "Report Author" field in the page footer or title.

Follow these general steps to pass parameters to reports using setUserParam.

1. Define calculations in your report using the RIPARAM() function.

2. Obtain values for use in the calculations in either of two ways:

D Create your own menus or prompts within your application.

D Enter a question mark as the value of the control table field.

3. If your application has obtained values for user parameters, pass the values
via calls to setUserParam; if you wish Viewer to obtain values for you, call
setUserParam for each such parameter with a value of questions mark (?).

The following sections describe each step in detail. Note that you can
alternatively create ParameteRR fields within a report. By using parameteRR
fields, a parameteRR value entry screen is automatically presented at runtime

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 185

without requiring any specific programming. See Chapter 9 Working With
ParameteRR Fields in the Using R&R documentation for full details.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 186

Define RIPARAM Calculations

In your report, define calculations that obtain user-supplied data via the
RIPARAM() function. The RIPARAM() function takes a user parameter name as
its argument and returns the parameter’s value as a string.

For example, in a general ledger application, you might define a user parameter
named CONAME for the company name, then prompt the user to enter a
company name.

To use the company name on the report, create a calculated field in Report
Writer whose expression is:

RIPARAM("CONAME")

You can place the calculated field wherever you want the company name to
appear.

Although this example uses an RIPARAM() calculated field to provide user input
as text in the report, you can use such fields to perform many different functions
in a report. For example, you might prompt the user for a value for a DISCOUNT
field. In the calculated field on the report, you can convert the user-entered
character data to numeric using a calculated field expression such as:

ORDERTOT * VAL(RIPARAM("DISCOUNT"))

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 187

Prompting for User Input

You can get user input in two ways:

� Supply a menu or prompt in your application that leads the
user to supply a value. Pass this value to the Viewer DLL via
setUserParam.

� Enter a question mark (?) value for any user-defined field.
Whenever a user-defined field contains a question mark, the
user will be prompted to enter a value.

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 188

Using the Question Mark Field Value

An alternate way to get user input for reports is to use a question mark (?) as
the value for a user parameter. Optionally, the value can also include the text
you want to appear as a prompt. For example, if you want to prompt the user for
his or her name, you might define an AUTHOR user parameter and give it the
value "?Enter your name:". At runtime, the user will see the dialog shown in
Figure 3.6.

Figure 3.6 Viewer Dialog Box with Prompt

The size and shape of this dialog box is the same for all user-defined fields. The
title bar contains the title set with setWinTitle. If setWinTitle has not been
called, the Viewer uses the report name. If the user selects the Cancel button,
the report will not run and the Viewer will write the "Canceled" message to the
status file.

If your control table field contains a question mark only and no text string, the
Viewer displays the dialog box shown in Figure 3.6 with the prompt "Enter value
for (USER PARAMETER)", as in "Enter value for AUTHOR".

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 189

Passing Parameter Values to the Viewer DLL

After obtaining values for user parameters, the final step is to pass those values
to the Viewer DLL so they become available for use in RIPARAM() calculations.
Use setUserParam to specify values for user parameters.

Related Functions

getFirstUserParam, getNextUserParam

Example

To specify, for the report whose handle is hRpt, a value of R. T. Firefly for the
user parameter named AUTHOR:

setUserParam (hRpt, (LPSTR)"AUTHOR", (LPSTR)"R. T. Firefly");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 190

setWinBorderStyle

BOOL FAR PASCAL setWinBorderStyle (int hReport, int style);

hReport Report handle.

style Preview window border style.

Return Value

The setWinBorderStyle function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinBorderStyle to specify the type of border for the preview window
for the report specified by hReport. The valid values for style are:

D If style is 1, the preview window will be fixed size with a standard
border.

D If style is 2, the user will be able to change the size of the preview
window.

Related Functions

setWinControlBox, setWinHeight, setWinLeft, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should
have a single-line border and a fixed size of 400 pixels wide and 300 pixels high:

setWinBorderStyle (hRpt, 1);

setWinWidth (hRpt, 400);

setWinHeight (hRpt, 300);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 191

setWinControlBox

BOOL FAR PASCAL setWinControlBox (int hReport, BOOL bControlBox);

hReport Report handle.

bControlBox Preview window control box flag.

Return Value

The setWinControlBox function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinControlBox to specify whether the preview window is to have a
control box in the upper-left corner for the report specified by hReport. If
bControlBox is non-zero, the preview window will have a control box.

Related Functions

setWinBorderStyle, setWinHeight, setWinLeft, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should
have a control box, and a maximize button, but no minimize button:

setWinControlBox (hRpt, 1);

setWinMaxButton (hRpt, 1);

setWinMinButton (hRpt, 0);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 192

setWinHeight

BOOL FAR PASCAL setWinHeight (int hReport, int height);

hReport Report handle.

height Preview window height.

Return Value

The setWinHeight function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setWinHeight to specify the height in pixels of the preview window for the

report specified by hReport.

Related Functions

setWinBorderStyle, setWinControlBox, setWinLeft, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should
have a single-line border and a fixed size of 400 pixels wide and 300 pixels high:

setWinBorderStyle (hRpt, 1);

setWinWidth (hRpt, 400);

setWinHeight (hRpt, 300);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 193

setWinLeft

BOOL FAR PASCAL setWinLeft (int hReport, int left);

hReport Report handle.

left Preview window left-edge position

Return Value

The setWinLeft function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinLeft to specify the position of the left edge of the preview window
for the report specified by hReport. left specifies how far, in pixels, from the left
edge of the screen the left edge of the preview window is to be.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should
begin 50 pixels down and 40 pixels to the right of the upper-left corner of the
screen:

setWinTop (hRpt, 50);

setWinLeft (hRpt, 40);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 194

setWinMaxButton

BOOL FAR PASCAL setWinMaxButton (int hReport, BOOL bMaxButton);

hReport Report handle.

bMaxButton Preview window maximize-button flag.

Return Value

The setWinMaxButton function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinMaxButton to specify whether the preview window is to have a
maximize button. If bMaxButton is non-zero the preview window will have a
maximize button.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should
have a control box, and a maximize button, but no minimize button:

setWinControlBox (hRpt, 1);

setWinMaxButton (hRpt, 1);

setWinMinButton (hRpt, 0);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 195

setWinMinButton

BOOL FAR PASCAL setWinMinButton (int hReport, BOOL bMinButton);

hReport Report handle.

bMinButton Preview window minimize-button flag.

Return Value

The setWinMinButton function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinMinButton to specify whether the preview window is to have a
minimize button. If bMinButton is non-zero the preview window will have a
minimize button.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMaxButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should
have a control box, and a maximize button, but no minimize button:

setWinControlBox (hRpt, 1);

setWinMaxButton (hRpt, 1);

setWinMinButton (hRpt, 0);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 196

setWinTitle

BOOL FAR PASCAL setWinTitle (int hReport, LPSTR lpszTitle);

hReport Report handle.

lpszTitle Report title.

Return Value

The setWinTitle function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinTitle to set the value of the "report title" parameter for the report
specified by hReport to the text specified by lpszTitle.

The report title is displayed in the following places:

� The title bar of the Preview window

� The Print Status window (if setDisplayStatus is called with a
non- zero bStatus value.)

� Below the Viewer icon (if setDisplayStatus is called with a bStatus

value of zero.)

� The title bar of the dialog boxes that display if setPrinter or
setPrinterPort is called with an lpszPrinter value of question
mark, or if setScopeUsage is called with an lpszScopeFlag
value of question mark.

If this field is blank, the Viewer will use the name of the report as the window
title.

Related Functions

getWinTitle, setStatus, setPrinter, setScopeUsage

Example

To specify that the preview window for the report whose handle is hRpt should
have a title of "on the desktop of Rufus T. Firefly":

setWinTitle (hRpt, (LPSTR)"on the desktop of Rufus T. Firefly");

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 197

setWinTop

BOOL FAR PASCAL setWinTop (int hReport, int top);

hReport Report handle.

top Preview window top-edge position.

Return Value

The setWinTop function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinTop to specify the position of the top edge of the preview window for
the report specified by hReport. top specifies how far, in pixels, from the top
edge of the screen the top edge of the preview window is to be.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMaxButton, setWinMinButton, setWinTitle, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should
begin 50 pixels down and 40 pixels to the right of the upper-left corner of the
screen:

setWinTop (hRpt, 50);

setWinLeft (hRpt, 40);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 198

setWinWidth

BOOL FAR PASCAL setWinWidth (int hReport, int width);

hReport Report handle.

width Preview window width.

Return Value

The setWinWidth function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWinWidth to specify the width, in pixels, of the preview window for the
report specified by hReport.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMaxButton, setWinMinButton, setWinTitle, setWinTop

Example

To specify that the preview window for the report whose handle is hRpt should
have a single-line border and a fixed size of 400 pixels wide and 300 pixels high:

setWinBorderStyle (hRpt, 1);

setWinWidth (hRpt, 400);

setWinHeight (hRpt, 300);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 199

setWriteAllow

BOOL FAR PASCAL setWriteAllow (int hReport, BOOL bAllow);

hReport Report handle.

bAllow Allow-write flag.

Return Value

The setWriteAllow function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setWriteAllow to set the "allow write" flag for the report specified by
hReport. If the value of bAllow is non-zero, Viewer will open database and index
files in a mode that allows them to be modified. The allow-write flag specified via
setWriteAllow overrides the flag value specified in RRW.INI. Even if the allow-
write flag is set to false, other R&R users will be able to report on files you are
using.

For more information about file write access settings, see the explanation of the
Allow Other Users to Update Database Tables setting in Chapter 5, "Setting
Defaults," in Using R&R. Note that this switch controls R&R’s behavior only when
accessing shared data; your database or network software may impose other file
access restrictions.

Related Functions

none

Example

To specify that Viewer should allow other users to modify databases and indexes
it is using to generate the report specified by hRpt:

setWriteAllow (hRpt, 1);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 200

setXbaseEditor

BOOL FAR PASCAL setXbaseEditor (int hReport, BOOL bXbase);

hReport Report handle.

bXbase Xbase-memos flag.

Return Value

The setXbaseEditor function returns zero if an error occurs. To obtain more

information about the error use getErrorInfo.

Description

Use setXbaseEditor to set the "Xbase memos" flag for the report specified by
hReport. If the value of bXbase is non-zero, Viewer will assume that all database
memos in use by this report were created with an Xbase memo editor.

Related Functions

none

Example

To specify that the database memos for the report whose handle is hRpt were
create with an Xbase memo editor:

setXbaseEditor (hRpt, 1);

Chapter 3: Accessing the Viewer DLL

R&R ReportWorks Xbase Developing Applications Page 201

writeRuntimeRecord

BOOL FAR PASCAL writeRuntimeRecord (int hReport, LPSTR lpszControlFile);

hReport Report handle.

lpszControlFile Job-control-filename buffer.

Return Value

The writeRuntimeRecord function returns zero if an error occurs. To obtain

more information about the error use getErrorInfo.

Description

Use writeRuntimeRecord to save all parameters for the report specified by
hReport to the ASCII Viewer Control File specified by lpszControlFile. If
lpszControlFile is the NULL pointer or contains the null string,
writeRuntimeRecord will overwrite the Viewer Control File read via
getRuntimeRecord. If the hReport was not returned from getRuntimeRecord,
lpszControlFile must contain a filename.

Related Functions

getRuntimeRecord, execRuntime

Example

To read an existing ASCII Viewer Control File, modify some parameters and then
save the results in the same file:

{

int hRpt;

if (hRpt = getRuntimeRecord ((LPSTR)"App Name",

(LPSTR)"c:\\rrdata\\runrecd"))

{

setScopeUsage (hRpt, 'E');

setFilterUsage (hRpt, 'E');

writeRuntimeRecord (hRpt, NULL);

}

}

Chapter 4 Using the Custom Control

Introduction (Using the Custom Control)

As noted in Chapter 1, the Viewer OCX (also referred to as a custom control)

provides one of three methods for running reports using the Viewer. The other
methods are explained in Chapter 2, "Using the Viewer Executable," and Chapter
3, "Accessing the Viewer DLL."

The Viewer OCX allows you to incorporate database reporting into your

applications and provides the following advantages:

� Access to the powerful reporting capabilities of R&R;

� Extensive control over report characteristics by means of more than 50
properties that can be set at design time or run time;

� Design-time support in the form of dialog boxes that allow you to point and
click to override settings in your report, such as tables, sorting and
grouping, user parameters, and destination.

The Viewer OCX is explained in the following sections:

• Installation

• Determining Report Status

• Using RRW.INI for Default Information

• Using the Custom Control

• Custom Control Properties

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 203

Installation

The custom control is installed if you select a Setup Type of "Typical" or if you

select "Custom" and specify Viewer as one of the options. Setup also copies

sample VB (Visual Basic) and C projects into appropriate subdirectories of the

program directory.

To add the R&R custom control to an existing VB project, select Tools ⇒ Custom

Controls to add the file RRW32.OCX, which Setup installs into your Windows
System directory. For information about other files you will need to distribute
when you use the R&R custom control in your applications, see Chapter 7,

"Distributing Reports."

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 204

Determining Report Status

When you use the custom control to print a report, you may want to know the
status of the report, such as whether the report printed successfully or, if not,
which error occurred while printing. How the control returns this status to you
depends on which method of report printing you use.

The custom control supports two methods of report printing, synchronous and
asynchronous. Synchronous printing means that the report will complete printing
before the next line of procedure code is executed. Asynchronous printing means
that the report will be printed while the remaining lines of procedure code are

executing. Each method has its own way of returning status information to you.

You print a report synchronously by setting the Action property to 1 (e.g.,
RRReport1.Action = 1). When you print a report synchronously, the status of the
report is returned in the following properties:

� LastErrorCode, which will contain the type of error that occurred, or 0 for no
error;

� LastErrorString, which will contain a text message describing the error, if
any;

� LastErrorPage, which will contain the page number of the last page printed.

You print a report asynchronously by setting the Action property to 2 (e.g.,
RRReport1.Action = 2). When you print a report asynchronously, the status of the
report is not returned in a property, but is written into the Viewer status file, which

is a text file called RRWRUN.OUT in the current working directory. See the section
entitled Understanding the Viewer Status File in Chapter 2 for a description of
the contents of this file.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 205

Using RRW.INI for Default Information

If RRW.INI, the R&R configuration file, is in the Windows directory, the Viewer will
use the default settings specified in that file. However, custom control properties
take precedence; any setting you specify using a custom control property will
always override the corresponding RRW.INI setting (see Figure 2.2 in Chapter 2

for a list of RRW.INI settings that the Viewer will use).

If you distribute reports to other users, you can customize RRW.INI for each user
and distribute it with the other Viewer files. However, the custom control
properties provide a more reliable way to control or override the defaults saved

with a report.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 206

Using the Custom Control

You use the Viewer OCX just like any other OCX control. For example, in Visual
Basic simply click on the R&R tool in the VB Toolbox. Then move the mouse
pointer over your form, press the left mouse button down, and drag the mouse.
When you release the mouse button, the custom control will be placed onto the

form.

You can change the value of a control property in either of two ways:

� Enter or select values on the appropriate property pages of the Report
Control Properties dialog;

� Directly enter or select values for each property on the Properties list.

Note that the R&R custom control will be visible at design time only. At run time, it
will not be displayed, but will be "at your service" to print your reports to a
printer; to a preview window; or to a text, database, or spreadsheet file. It does

this by invoking the Viewer executable (described in Chapter 2) through the
Viewer DLL (described in Chapter 3). As you will see, the custom control properties
correspond closely to the control parameters used by the Viewer. (See

Appendix A, "Runtime Equivalencies.")

To print or display a report in your program, you must set at least two properties:

1. Set the ReportName property to the name of the report you want to print;
alternatively, set the ReportPick property either to 1 (One) to prompt the
user to select a report or 2 (Many) to prompt the user to select several

reports in succession.

2. Set the Action property to 1 to trigger execution of the report.

The ReportName and ReportPick properties can be set at design time or at run
time. The Action property must be set at run time in your procedure code (e.g.,
RRReport1.Action = 1). You can also set many other properties (Destination,

SortFields, etc.) to override the values saved in the report.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 207

Changing Values Using the Properties List

If you use the Property list to set or change values, the data type of the property
determines how you change its value:

� To change an integer property, enter a value in the settings box.

� To change an enumerated property, either type a number into the settings
box or select a value from the drop-down list that appears when you click on
the down arrow next to the settings box. You can also double-click on an
enumerated property to cycle through the list of values.

� You change string properties by typing a string in the settings box. You can
change many string properties by means of dialog boxes that appear when
you click on the ellipsis (...) to the right of the settings box, or when you

double-click on the property.

� You set some properties by selecting or entering either True (to turn the
setting on) or False (to turn the setting off).

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 208

Changing Values Using the Control Properties Dialog

The Control Properties dialog (see Figure 4.1) consists of 11 property pages for
controlling the more than 50 custom control properties.

Figure 4.1 Report Control Properties Dialog Box

To set or change values on a property page, do the following:

1. Select the appropriate tab to open the property page.

2. Change values by clicking buttons/checkboxes, entering text into text
boxes, and selecting ellipses buttons (where available) to choose from
browse dialogs.

3. Select Apply (or click another tab) to save your changes.

4. Repeat Steps 1 – 3 for each property page as necessary.

5. When you are finished setting or changing values, select OK to close the
Control Properties dialog box.

The following sections briefly explain the settings on each of the property pages.
See the Custom Control Properties section for additional information about

individual properties, including examples and descriptions of how to set values in
your procedure code.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 209

General Property Page

Settings on the General property page control report selection and status

checking.

Setting Purpose

Report Name Sets the ReportName property to specify the
report to be run. Either enter the path and

name of the report or select the ellipses button
to display the Open dialog to select a report
file.

Clear ... Sets the ResetProperties property to specify
whether settings are reset to their default
values when a new report is selected.

Update ... Sets the UpdateControl property to specify

whether settings should be updated with the
properties of the saved report when a new
report is selected.

Display Report

Errors

Display Report
Status

Sets the DisplayError property to either True

(display errors) or False (don’t display errors.

Sets the DisplayStatus property to either
True or False to control whether a Print Status

window is displayed when a report is printed.

Allow User ... Sets the NoEscape property to control

whether a Cancel button is available on the
Print Status window (when Display Report

Status is set to True).

Report Pick Sets the ReportPick property to enable the
user to choose a report (when set to 1) or a

series of reports (when set to 2) at Viewer.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 210

Print To Property Page

Settings on the Print To property page control or override the print and/or export

destination of the Viewer report.

Setting Purpose

Report
Destination

Excel Export
Destination

Sets the Destination property to specify the
report destination: Saved Destination, Prompt

User, Preview Window, Printer, or Export. If
set to Export, a drop-down list of export types
is available (Text, DBF, XLS, RTF, HTML,

ActiveX control, Text Data, or Word Merge file)

Sets the ExportDestination property to
specify the destination (Preview Window,
Printer, or File) for an export type of Excel

PivotTable or Excel Chart. If File is selected,
enter the output name in the File Name box.

File Name Sets the PrintFileName property to specify
the output file for any export to file.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 211

Printer Property Page

Settings on the Printer property page control or override the destination printer for

the Viewer report.

Setting Purpose

Printer
Destination

Print a Test

Pattern

Sets the Printer property to specify whether
to use the saved printer, override the saved

printer, or prompt the user at Viewer for
printer selection.

Sets the TestPattern property to specify

whether a test pattern will be printed for
purposes of checking report layout before
printing.

Start Page Sets the StartPage property to specify the

page at which to begin printing.

End Page Sets the EndPage property to specify the
page at which to end printing.

Number of

Copies

Sets the CopiesToPrinter property to specify

how many report copies to print.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 212

Preview Window Property Page

Settings on the Preview Window property page control the location, dimensions,

and title of the Viewer preview window.

Setting Purpose

Left Sets the WindowLeft property to specify the
starting point for the left edge of the preview

window.

Height Sets the WindowHeight property to specify
the height (in pixels) of the preview window.

Top Sets the WindowTop property to specify the
starting point for the top edge of the preview
window.

Width Sets the WindowWidth property to specify

the width (in pixels) of the preview window.

Minimize Button Sets the WindowMinButton property to

control whether the preview window will have
a minimize control in the caption bar.

Maximize Button Sets the WindowMaxButton property to

control whether the preview window will have
a maximize control in the caption bar.

Border Sets the WindowBorderStyle property to
control whether the preview window will be
fixed or variable size.

Title Sets the WindowTitle property to specify the

text that will appear in the title bar of the
preview window, the Print Status window (if
Display Report Status is set to True), and in
the title bars of the dialog that displays when

the Printer, Port, Destination, or Scope value is
a question mark.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 213

Database Property Page

The Database property page settings control several report database

characteristics, including master table and index selection and scope settings.

Setting Purpose

Master Table Sets the MasterTable property to override the
master table saved with the report.

Master Index Sets the MasterIndex property to specify or
override the master index selection.

Type Sets the data type argument to the

MasterIndex property.

Tag Sets the tag argument to the MasterIndex
property (for multiple-field index files).

Memo Filename Sets the MemoFileName property to specify

the name and location of the text memo file to
be used by the Viewer report.

Saved Scope Sets the Scope property to control use of the
saved scope values, override of the scope, or

prompting of the user to supply scope values.

Low Scope If Scope is set to 2 (Override), this sets the

LowScope property to specify the starting

scope.

If Scope is set to 2 (Override), this sets the
HighScope property to specify the ending
scope.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 214

Sort Property Page

The Sort property page specifies or overrides the field(s) to be used for sorting of

report data. Selecting one or more sort fields in the numbered field-selection slots
sets the SortFieldsString property accordingly.

To display a drop-down list of available fields, click the arrow at the right of the
selection slot.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 215

Group Property Page

The Group property page specifies or overrides the field(s) to be used for grouping

of report data. Selecting one or more group fields in the numbered field-selection
slots sets the GroupFieldsString property accordingly.

To display a drop-down list of available fields, click the arrow at the right of the
selection slot.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 216

Query Property Page

The Query property page specifies or overrides the query to be used to filter the

report data.

Setting Purpose

Saved Query Sets the Query property to specify using the
saved query, ignoring the saved query,

overriding the saved query, or prompting the
user.

Query Override If Saved Query is set to Override, this sets the

Filter property to specify the query to be
used.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 217

Relations Property Page

The Relations property page specifies or overrides the related tables for the Viewer

report.

Setting Purpose

Relate Tables Sets the RelatedTablesString property to
specify or override table relations.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 218

Defaults Property Page

The Defaults property page specifies or overrides defaults for data, image, and

report directories and for index file extension.

Setting Purpose

Data Sets the DataDirectory property to specify
the default directory for data files used by a

report.

Image Sets the ImageDirectory property to specify
default location for image files.

Report Sets the ReportDirectory property to specify
default location for report or library files.

Memo Editor Sets the XbaseEditor property to specify
which memo editor was used to prepare

database memos for use in reports.

Index Extension Sets the IndexExtension property to specify
a default index file extension.

Allow other

users...

Sets the WriteAllow property to specify

whether database users can modify tables
used by reports.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 219

Parameters Property Page

The ParametersString property page specifies user parameter values to be used

with the Viewer report.

Setting Purpose

User Parameters Name(s) of the user-defined parameter(s) in
the report, as specified using the RIPARAM()

function.

Value Corresponding value to be assigned to each
user parameter at Viewer.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 220

Custom Control Properties

The following properties are available in the R&R custom control:

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 221

(About)

Description

Double-click About to display the version of the R&R custom control.

Availability

Design time only

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 222

Action

Description

Action is a property that triggers the print, display, or export of the report.

Usage

[form.]ControlName.Action [=Action%]

Example

RRReport1.Action = 1

« Prints, displays, or exports the report, depending on the Destination property,
and does not return until the report is completed. »

Comments

Set the Action property to 1 or 2 in your procedure code to print, display, or
export the report in response to a user event. In most cases, it will be more
convenient to set this property to 1.

If set to 1, the action is synchronous, which means that the next line of Visual
Basic procedure code will not execute until the report is completed. The status of

the report will be returned in the LastErrorCode, LastErrorString, and
LastErrorPage properties.

If set to 2, the action is asynchronous, so that the report may still be running
when the next line of Visual Basic procedure code is executed. When the report

completes, its status is written into the status file.

Data Type

Integer

Availability

Write-only at run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 223

CopiesToPrinter

Description

Specifies the number of copies to be printed if you are printing to a printer (if the
Destination property is set to 1).

Usage

[form.]ControlName.CopiesToPrinter[= NumCopies%]

Example

RRReport1.CopiesToPrinter = 3

« Prints three copies of the report. »

Comments

This property is optional. The number must be between 0 and 999, inclusive. If
you leave this property blank or enter 0, the Viewer prints the number of copies
saved with the report.

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 224

DataDirectory

Description

Specifies the default directory where the Viewer will look for tables, indexes, and
text memo files to be used when the report is printed.

Usage

[form.]ControlName.DataDirectory[= DirectoryName$]

Example

RRReport1.DataDirectory = "c:\mis\data"

« Looks for data files in a directory called "c:\mis\data." »

Comments

If the tables, indexes, and text memo files used in the report are not in the saved
directories, then the Viewer will look in this directory for these files.

Data Type

String

Availability

Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 225

Destination

Description

Specifies the destination to which your report is to be printed or exported

(Preview, Printer, Text, DBF, XLS, RTF, text data, Word merge, Excel Chart, Excel
PivotTable, ActiveX control, or HTML).

Usage

[form.]ControlName.Destination[= Destination%]

Example

RRReport1.Destination = 1

« Sends the report to a preview window. »

Comments

This property is optional. Set it to 0 (the default) to print to the printer saved with

the report (or to the printer specified in the Printer property). This property can
contain one of the following values:

0 – Saved (uses the printer saved with the report);

1 – Window (sends the report to a preview window);

2 – Printer (sends the report to a printer);

3 – Text File (exports the report to an ASCII text file);

4 – DBF File (exports the report to a DBF database file);

5 – XLS File (exports the report to a XLS spreadsheet file);

6 – Prompt user (asks user for destination);

7 – RTF File (exports to a Rich Text Format file);

8 – Text Data File (exports to a Text Data file);

9 – Word Merge file (exports to a Word Merge file).

10 – Excel Chart

11 – Excel PivotTable

12 – ActiveX Viewer file

13 – HTML export

If you specify 3 (Text File), 4 (DBF File) 5 (XLS File), 7 (RTF File), 8 (Text Data

file), 9 (Word Merge file), 12 (ActiveX), or 13 (HTML), you can also set the
PrintFileName property to provide the name of the destination file to override the
saved destination file name.

If you select Window, the report will be sent to the display, allowing the user to
preview the report before printing it. After previewing the report, the user can
select the Print button in the Preview window to send the report to the printer
saved with the report or specified in the Printer property. Note that if the value of

Destination is 1 and the PrintFileName property has been set, the report will be
output to the file specified in PrintFileName when the user selects Print in Preview.

Setting this property to 6 allows the user to select the print destination at run

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 226

time. The user will see the dialog box shown in Figure 4.2. If the WindowTitle

property is set, the title bar will contain the WindowTitle value. If WindowTitle is

empty, the title bar will contain the report name.

Figure 4.2 Print Destination Dialog Box

The user can select Screen to preview the report, Printer to print it, or Export to
display the Export dialog. If the user selects Cancel, the report will not run, and

the "Canceled" status message will be returned in the LastErrorString property or
the Viewer status file.

Data Type

Integer (Enumerated)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 227

DisplayError

Description

Specifies whether errors are to be displayed when a report is printed.

Usage

[form.]ControlName.DisplayError [= {True|False}]

Example

RRReport1.DisplayError = True

« Specifies that any errors that occur when a report is printed will be displayed. »

Comments

This property is optional. If DisplayError is True, Viewer error messages are

displayed in addition to being returned in the LastErrorString property. In this
case, the Viewer stops processing a report when it encounters an error and
displays an error message dialog. The user must then select OK to acknowledge
the error and resume processing.

If DisplayError is False, Viewer error messages are not displayed, but are returned
in the LastErrorString property or the Viewer status table.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 228

DisplayStatus

Description

Specifies whether or not status information is to be displayed when a report is
printed.

Usage

[form.]ControlName.DisplayStatus [= {True|False}]

Example

RRReport1.DisplayStatus = False

« Specifies that status information will not be displayed when a report is printed.

»

Comments

The DisplayStatus property enables you to specify whether the Viewer should
display a Print Status window while it is generating a report. If the property is set
to True, the Viewer will display a Status window. If NoEscape is set to False, the

Status window will contain a Cancel choice that allows the user to terminate a
report in progress.

If DisplayStatus is set to False, the Viewer will not display a Status window but will
instead display as an icon while it is running.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 229

EndPage

Description

Specifies at which page of the report to end printing.

Usage

[form.]ControlName.EndPage[= Page%]

Example

RRReport1.EndPage = 20

« Specifies that the report should end printing at the completion of page 20. »

Comments

This property is optional. The StartPage and EndPage properties allow you to

override the starting and ending page numbers saved with the report. The default
value for these properties is zero.

To specify page numbers, include a StartPage value, an EndPage value, or both. If
you specify both, EndPage must be equal to or greater than StartPage. For

example, users can restart a canceled report where it was interrupted by
specifying the starting page number as the StartPage value and 999999999 as the
EndPage value. To reprint one or more consecutive pages, specify the page
numbers in the StartPage and EndPage properties. To print just one page, specify

the same value for both.

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 230

ExportDestination

Description

Specifies the destination (display, file, or printer) when exporting to an Excel
PivotTable or Chart.

Usage

[form.]ControlName.ExportDestination[= Destination%]

Example

RRReport1.ExportDestination = 2

« Sends the PivotTable or Chart export to a file. »

Comments

Set this property to one of the following values if you are exporting to an Excel
PivotTable or Chart..

0 – Window;

1 – Printer;

2 – File.

If you set the value to 2 (File), use PrintFileName to specify a file name for the
export.

Data Type

Integer (Enumerated)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 231

Filter

Description

Specifies a query to select records to be used when printing the report.

Usage

[form.]ControlName.Filter[=Filter$]

Example

RRReport1.Filter = "Year > 1996"

Comments

The optional Filter property specifies a logical expression that will override the
query saved with a report, if any, when the value in Query is 2.

The syntax of the Filter expression is identical to that of a calculated field
expression that returns a logical value. The Filter expression can be up to 1024
characters long. When an expression is specified, the Viewer selects all records
where the value of the Filter expression is true. The expression can refer to any

data or calculated fields that are available in the report.

For example, if you enter the expression CITY="Dallas", the Viewer will select all
records where the value of this expression is true, in other words all records where
the value in the CITY field is Dallas. If the city name were in a character field

named NOTE, the expression NOTE="*Dallas*" would select all records in which
the NOTE field contained the word "Dallas".

Entering the expression PASTDUE=T tells the Viewer to select all records where
the value in the PASTDUE field is true. Entering AMOUNT>=200 will select all

records where the value in the AMOUNT field is equal to or greater than 200.

Entering the following expression will select all records where the date in the
INVDATE field of the RRORDERS table is January 31, 2002:

RRORDERS->INVDATE={01/31/2002}

Compound expressions can be entered by using parentheses. For example, the
following expression selects all records where the value in the CITY field is either
Dallas or Houston and where the value in the SALES field is greater than 50,000:

(CITY="Dallas" or CITY="Houston") and SALES>50000

Note that the value of Query must be 2 in order for the Filter override to take

effect. If you omit Query, the Filter value will be ignored and the report will be run
using the saved query (if any).

When setting this property at run time, make sure that you enclose your query
expression in double quotes. If your query expression contains internal quotes,

such as:

LNAME = "Jones"

make sure to change all of the internal double quotes to single quotes and then
put double quotes around the entire query expression, such as:

"LNAME = ‘Jones’"

At design time, you can change this property array in two ways:

� Double-click this property to display the Query property page (see Figure
4.3), where you can specify a query to override the one saved with the
report.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 232

Figure 4.3 Query Property Page

� Simply enter the query expression into the settings box.

� Data Type ; String Availability; Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 233

GroupFields

Description

Specifies the field(s) to be used to group the data in your report.

Usage

[form.]ControlName.GroupFields(ArrayIndex)[= "+|-GroupField"]

Example

RRReport1.GroupFields(0) = "Division"

« Use "Division" as the first group field. »

Comments

Group fields can be database fields, calculated fields, or total fields.

When setting this property at run time, use a separate line of code to specify each
group field. The first group field you specify must be assigned array index 0, the
second group field must be assigned array index 1, etc. The index values you
assign must be continuous; no gaps are allowed (0,1,2 would be correct, but 0,1,3

would be wrong).

Data Type

Array of strings

Availability

Run time

GroupFieldsString

Description

Specifies the field(s) to be used to group the data in your report.

Usage

[form.]ControlName.GroupFieldsString[= "+|-GroupField1;+|-GroupField2"]

Example

RRReport1.GroupFieldsString = "Division"

« Use "Division" as the first group field. »

Comments

Group fields can be database fields, calculated fields, or total fields.

At design time, you can change this property array in two ways:

� Double-click this property to display the Group property page, which lists

group fields in the report. Clicking on the down arrow next to each group
field will drop down a list of all fields used in the report from which you can
select.

� Enter group field names separated by semicolons. To override some group
fields, but not all of them, you must use a semicolon as a place-holder. For

example, to change the first and third group field, you would enter
"Division;;Region".

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 234

� Data Type; String; Availability; Design time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 235

GroupFields

Description

Specifies the field(s) to be used to group the data in your report.

Usage

[form.]ControlName.GroupFields(ArrayIndex)[= "+|-GroupField"]

Example

RRReport1.GroupFields(0) = "Division"

« Use "Division" as the first group field. »

Comments

Group fields can be database fields, calculated fields, or total fields.

When setting this property at run time, use a separate line of code to specify each
group field. The first group field you specify must be assigned array index 0, the
second group field must be assigned array index 1, etc. The index values you
assign must be continuous; no gaps are allowed (0,1,2 would be correct, but 0,1,3

would be wrong).

Data Type

Array of strings

Availability

Run time

GroupFieldsString

Description

Specifies the field(s) to be used to group the data in your report.

Usage

[form.]ControlName.GroupFieldsString[= "+|-GroupField1;+|-GroupField2"]

Example

RRReport1.GroupFieldsString = "Division"

« Use "Division" as the first group field. »

Comments

Group fields can be database fields, calculated fields, or total fields.

At design time, you can change this property array in two ways:

� Double-click this property to display the Group property page, which lists

group fields in the report. Clicking on the down arrow next to each group
field will drop down a list of all fields used in the report from which you can
select.

� Enter group field names separated by semicolons. To override some group
fields, but not all of them, you must use a semicolon as a place-holder. For

example, to change the first and third group field, you would enter
"Division;;Region".

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 236

� Data Type; String; Availability; Design time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 237

HighScope

Description

Specifies the high scope of the records to be used when the report is printed.

Usage

[form.]ControlName.HighScope[= Scope$]

Example

RRReport1.HighScope = "Smith"

« Specifies that the scope of records to be used should stop just after "Smith"
when the report is printed. »

Comments

Set this property if you want to override the high scope value saved in the report.
Be sure to set the Scope property to 2 to use the override. See Scope for a
complete description of this feature.

Data Type

String

Availability

Design time; Run time

ImageDirectory

Description

Specifies the default directory where the Viewer will look for image files used in
the report.

Usage

[form.]ControlName.ImageDirectory[= DirectoryName$]

Example

RRReport1.ImageDirectory = "c:\mis\images"

« Looks for image files in a directory called "c:\mis\images." »

Comments

The Viewer will look for image files in this directory when they are not in the saved
directory. The directory you specify with this property overrides any default image

directory specified in the RRW.INI file.

Data Type

String

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 238

Default Image File Directory (/I)

To specify a default directory where the Viewer may look for image files used in
the report, use the /I switch with the Viewer command. The directory you specify
with this switch will override any default image directory specified in the RRW.INI

file.

For example, the following command specifies C:\IMAGES as the default image
directory:

RRWRUN RRWRUNIN 1 2 /IC:\IMAGES

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 239

IndexExtension

Description

Specifies the default index file extension.

Usage

[form.]ControlName.IndexExtension[=Extension%]

Example

RRReport1.IndexExtension=5

« Uses "ntx" as the default index file extension. »

Comments

This property is optional; it can contain one of the following values:

0 – None 4 – NDX (dBASE III)

1 – CDX (FoxPro) 5 – NTX (Clipper)

2 – IDX (FoxBASE+) 6 – NSX (SuccessWare)

3 – MDX (dBASE IV) 7 – WDX (WordTech)

The default index extension is used to locate indexes that are specified without

extensions or that cannot be located using the extensions saved with the report.

Data Type

Enumerated integer

Availability

Run time; design time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 240

LastErrorCode

Description

Returns the error code for the last runtime error. It will be one of the following
four values:

0 = No error;

1 = User canceled;

2 = Error in runtime parameters;

3 = Error in report.

Usage

[form.]ControlName.LastErrorCode

Example

'If error occurs, display error message

RRReport1.Action = 1

if RRReport1.LastErrorCode < > 0 then

MsgBox RRReport1.LastErrorString

end if

« If an error occurs, this code calls up a message box that displays the error
string. »

Comments

LastErrorCode is only valid after setting the Action property to 1. If you set Action
to 2, the report is run asynchronously, so LastErrorCode will not be set.

Data Type

Integer

Availability

Run time (read and write)

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 241

LastErrorPage

Description

Returns the page number of the last successfully printed page.

Usage

[form.]ControlName.LastErrorPage

Example

'If error occurs, display error message

RRReport1.Action = 1

if RRReport1.LastErrorCode < > 0 then

pagestr$ = "; last page printed was "

+ str(RRReport1.LastErrorPage)

MsgBox RRReport1.LastErrorString + pagestr$

end if

« If an error occurs, this code calls up a message box that displays the error string
and the last page printed. »

Comments

LastErrorPage is only valid after setting the Action property to 1. If you set Action
to 2, the report is run asynchronously, so LastErrorPage will not be set.

Data Type

Integer

Availability

Run time (read and write)

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 242

LastErrorString

Description

Returns the error string for the last runtime error.

Usage

[form.]ControlName.LastErrorString

Example

'If error occurs, display error message

RRReport1.Action = 1

if RRReport1.LastErrorCode < > 0 then

MsgBox RRReport1.LastErrorString

end if

« If an error occurs, this code calls up a message box that displays the error
string. »

Comments

LastErrorString is only valid after setting the Action property to 1. If you set Action
to 2, the report is run asynchronously, so LastErrorString will not be set.

Data Type

String

Availability

Run time (read and write)

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 243

LoadProperties

Description

LoadProperties is a method that can be used to update the custom control settings
with the current report settings.

Usage

[form.]ControlName.LoadProperties()

Example

RRReport1.LoadProperties()

«Updates the custom controls with the settings from the current report. »

Comments

This method is used to load all custom control properties with the values from the
current report; use it to display or explicitly see all report properties.

Availability

Runtime

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 244

LowScope

Description

Specifies the low scope of the records to be used when the report is printed.

Usage

[form.]ControlName.LowScope[= Scope$]

Example

RRReport1.LowScope = "Jones"

« Specifies that the scope of records to be used should start at "Jones" when the
report is printed. »

Comments

Set this property if you want to override the low scope value saved in the report.
Be sure to set the Scope property to 2 to use the override. See Scope for a
complete description of this feature.

Data Type

String

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 245

Master Index

Description

Specifies the master index to be used in the report.

Usage

[form.]ControlName.MasterIndex[= MasterIndex$,
[IndexType$, IndexTag$]]

Example

RRReport1.MasterIndex = "c:\mis\sales.mdx, N, CUSTID"

« Uses the file c:\mis\sales.mdx, a numeric index with a tag of CUSTID in the

report. »

Comments

The MasterIndex property enables you to specify a master index for a report that
was saved without one, override the master index saved with a report, or remove
a saved master index from a report. To specify a master index or override the

saved one, the specification can consist of any or all of three values in the
following order:

<index>,<index type>,<tag>

In this specification, <index> represents the index file specification, which can be
a complete path and file name, a directory, or a file name.

� If you specify both a directory and a file name, this directory is the only
directory searched and this file name is the only file the Viewer searches

for.

� If you specify a directory without a file name, the Viewer searches the
specified directory for the master index name saved with the report.

� If you specify a file name without a directory, the Viewer searches for a
file with the specified name in the directory of the master index saved
with the report, then in the current master database directory, then in
the default data directory specified via the DataDirectory property or in

RRW.INI. If no default is specified, the Viewer searches for the file in the
current directory.

In this specification, <index type> is the data type of the new index, represented

as N for numeric, C for character, D for date, or DT for datetime. You can omit
this value if you are overriding a saved master index and the replacement index is
the same type (although it is good practice to include the data-type specifier). If
the index named in the specification is a multiple-field index file (MDX, CDX, or

WDX), the <tag> part of the specification represents an index tag. If you omit the
<index> or <index type> part, use a comma as a place holder.

For example, the following specification replaces the master index saved with the
report with an index named CUST96.MDX in the CUSTOMER directory on drive C.
Since the replacement index is the same data type as the original index, the
specification includes a comma in place of the <index type>. It also replaces the

saved index tag with the CUSTID index tag:

C:\CUSTOMER\CUST96.MDX,,CUSTID

The following specification changes only the index tag of the master index saved
with the report:

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 246

,,CUSTID

To remove the master index saved with the report without specifying a new
master index, use the MasterIndex value ,R.

If you omit this field or leave it blank, the Viewer uses the master index saved
with the report, if any.

At design time, you can change this property in two ways:

� Double-click this property (or click the ellipsis button) to select an index.

� Simply enter the index, type, and tag into the settings box.

� Data Type

String

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 247

MasterTable

Description

Specifies the name of a table that will override the master table saved with the
report.

Usage

[form.]ControlName.MasterTable[= MasterTableName$]

Example

RRReport1.MasterTable = "c:\mis\sales.dbf"

« Uses the file c:\mis\sales.dbf as the master table for the report. »

Comments

This property is optional. The master table you specify should have the same
columns as the master table originally used in the report.

If you leave this property blank, the Viewer uses the master table saved with the
report.

At design time, you can change this property in two ways:

D Double-click this property to display the Database property page. Then click

the ellipsis button next to Master Table to open the Select Master Table
dialog (see Figure 4.4).

Figure 4.4 Select Master Table Dialog

� Simply enter the table name in the settings box.

� Data Type; String; Availability; Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 248

MemoFileName

Description

Specifies the name and optional directory location of the text memo file to be used
in the report, which will override the text memo file saved with the report.

Usage

[form.]ControlName.MemoFileName[= MemoFileName$]

Example

RRReport1.MemoFileName = "c:\mis\q3notes.txt"

« Selects the memo file named "q3notes.txt" in the c:\mis directory. »

Comments

This property is optional.

� If both a directory and a file name are specified, this directory is the only
directory searched and this file name is the only file the Viewer searches
for.

� If a directory is specified without a file name, the Viewer searches the
specified directory for the text memo file name saved with the report.

� If a file name is specified without a directory, the Viewer searches for a
file with the specified name in the directory saved with the report, then

in the default data directory as specified in the DataDirectory property or
in RRW.INI.

If you leave this property blank, the Viewer uses the text memo file saved with the
report, if any.

At design time, you can change this property in two ways:

� Double-click this property to see the Database property page. Then click the

ellipsis button next to the Memo File box to display the Select Memo File
dialog, which allows you to select a memo file and browse drives, directories,
and files to which you have access.

� Simply enter the file name into the settings box.

� Data Type; String; Availability; Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 249

NoEscape

Description

Specifies whether a report can be canceled.

Usage

[form.]ControlName.NoEscape [= {True|False}]

Example

RRReport1.WindowNoEscape = True

« Specifies that a report cannot be canceled once it begins to be printed. »

Comments

This property is optional, and can be set to either True or False. True means the

Cancel button in the status window is not active while reports are being output.
False means the user may select Cancel during report output to pause or end the
job. The default value is false.

Note that the Status window appears only when the DisplayStatus property is set
to true.

If the user cancels synchronous execution of the report, the LastErrorCode
property is set to C. If the report is run asynchronously, the RO_ECODE entry in
the status file contains a C (see the section in Chapter 2 entitled Understanding
the Viewer Status File.)

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 250

PageSize

Description

Specifies the page size to be used for the report.

Usage

[form.]ControlName.PageSize [= PortName$]

Example

RRReport1.PageSize = "LEGAL"

« Prints the report to legal page size »

Comments

The current available values for PageSize are:

A4
A5
B4
LEGAL

LETTER
EXECUTIVE

STATEMENT

Data Type

String

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 251

Parameters

Description

Specifies user parameter values to be used when the report is printed.

Usage

[form.]ControlName.Parameters(ArrayIndex)
[= ParameterName$=ParameterValue$]

Enter a "name=value" string for each RIPARAM() function in your report for

which you want to define a value. Use a separate line of code for each change.

The order of strings in the array does not matter, since each RIPARAM() function
is identified by name.

Example

RRReport1.Parameters(0) = "Title=Cumulative Earnings"

« Uses the value "Cumulative Earnings" wherever the function RIPARAM("Title")
appears in the report. »

Comments

Use this property to define values for the RIPARAM() functions in your report.
You can specify up to six (256) different parameters in the custom control

(Parameters(0) – Parameters(255)). See the Parameter Passing section of
Chapter 2 for information on using this feature.

Data Type

Array of strings

Availability

Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 252

ParametersString

Description

Specifies user parameter values to be used when the report is printed. Up to 256
parameter values may be specified.

Usage

[form.]ControlName.ParametersString[=ParameterName$=ParameterValue$]

Example

RRReport1.ParametersString = "Title=Cumulative Earnings"

« Uses the value "Cumulative Earnings" wherever the function RIPARAM("Title")
appears in the report. »

Comments

At design time, you can change this property array in two ways:

� Double-click this property to display the Parameters property page, which
lists parameters and values in the report.

� Enter the parameter/value pairs separated by semicolons.

� Data Type; Array of strings; Availability; Design time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 253

Port

Description

Specifies the name of the printer port to which the report is to be printed.

Usage

[form.]ControlName.Port [= PortName$]

Example

RRReport1.Port = "LPT1:"

« Prints the report to the printer connected to "LPT1:". »

Comments

This property is optional. Enter a value such as "LPT1:" to override the printer port

(and the printer associated with that port) saved with the report. Note that the
colon is required.

You can also use the question mark (?) value or enter the word "Default" for this
property. When the Port property contains a question mark, the user will see the

Print dialog box shown in Figure 4.5. When the Port property contains the word
"Default," Viewer will use the default Windows printer port. (See the description of
the Printer property.)

At design time, you can change this property by entering the port name into the
settings box.

Data Type

String

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 254

Printer

Description

Specifies the name of the printer to which the report is to be printed.

Usage

[form.]ControlName.Printer [= PrinterName$]

Example

RRReport1.Printer = "HP LaserJet 4/4M"

« Prints the report to a printer called "HP LaserJet 4/4M." »

Comments

This property is optional. Enter a value to override the printer saved with the

report. This property can have one of two values:

� The name of an available Windows printer. Available Windows printers are
listed in the R&R Print dialog (accessed by selecting File ⇒ Print in interactive

Report Writer). The value is case insensitive (that is, you can enter it in
upper, lower, or mixed case).

� The question mark (?) value, to allow the user to select a printer at runtime.

o When the Printer property contains a question mark, the Print dialog
will display, as shown in Figure 4.5.

� The word Default to force the Viewer to use the current default Windows

printer.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 255

Figure 4.5 Print Dialog Box

Initially, the printer saved with the report is highlighted. The user can select
another printer and port as necessary.

If this property is blank, the printer saved with the report will be used.

At design time, you can change this property in two ways:

� Double-click this property to display the Printer property page; then select
the appropriate Printer Destination setting.

� Simply enter the printer name into the settings box.

� Data Type; String; Availability; Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 256

PrintFileName

Description

Specifies the name of the file to which the report is to be printed or exported.

Usage

[form.]ControlName.PrintFileName[= FileName$]

Example

RRReport1.PrintFileName = "c:\output\q3sales.txt"

« Prints the report to a file named "q3sales.txt" in c:\output. »

Comments

Use this property if you have set the Destination property to 3, 4, 5, or 7 and you

want to override the saved destination.

At design time, you can change this property in two ways:

� Double-click this property to display the PrintTo property page; then enter
the appropriate file name in the File Name box.

� Simply enter the file name into the settings box.

� Data Type; String; Availability; Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 257

Query

Description

Specifies which, if any, query to use when the report is run.

Usage

[form.]ControlName.Query [= QueryOption%]

Example

RRReport1.Query = 2

« Ignores the query in the report and uses the query expression in the Filter
property in place of it. »

Comments

The optional Query property allows you to control whether a query is applied to
the report. Query can have one of four values:

0 – Saved. Run the report using the query saved with it, if any. The expression
in the Filter property will be ignored and the report will be run exactly as it

was saved.

1 – Entire. Run the entire report, ignoring any query saved in the report or
contained in the Filter property.

2 – Override. Override the saved query with the expression in the Filter

property. The report will be run with the records selected by the Filter
property expression.

3 – Prompt user. Display a dialog box allowing the user to enter a query

expression or edit the query saved with the report. If no query was saved
with the report, the Insert Selection Rule dialog will display, as shown in
Figure 4.6.

Figure 4.6 Insert Selection Rule Dialog Box

If a query was saved with the report, the Query dialog box will display, as shown
in Figure 4.7.

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 258

Figure 4.7 Query Dialog Box

When you set Query to 3, the value of the Filter property is always ignored.

Data Type

Integer (Enumerated)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 259

RelatedTables

Description

Specifies related tables to override those saved with the report.

Usage

[form.]ControlName.RelatedTables(ArrayIndex)
[= Alias$=TableName$,<IndexName$>,<TagName$>]

Example

RRReport1.RelatedTables(0) = "FIRST=c:\q2\first.dbf"

RRReport1.RelatedTables(1) = "SECOND=c:\q2\second.dbf"

« Changes the first and second related tables in the report. »

Comments

These properties are optional. If you do not specify any related table overrides,
the Viewer uses the tables saved with the report. It searches for these tables
using the rules explained in Chapter 7.

When setting this property at run time, use a separate line of code for each
change. Up to ninety nine (99) different related tables may be specified
(RelatedTables(0) – RelatedTables(98)).

Data Type

Array of strings

Availability

Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 260

RelatedTablesString

Description

Specifies related tables to override those saved with the report.

Usage

[form.]ControlName.RelatedTablesString
[= Alias$=TableName$,<IndexName$>,<TagName$>]

Example

RRReport1.RelatedTablesString =

"FIRST=c:\q2\first.dbf; SECOND=c:\q2\second.dbf"

« Changes the first and second related tables in the report. »

Comments

These properties are optional. If you do not specify any related table overrides,
the Viewer uses the tables saved with the report. It searches for these tables
using the rules explained in Chapter 7.

At design time, you can change this property array in two ways:

� Double-click this property to display the Relations property page. Then use
the ellipsis buttons to select related tables and indexes. This is the preferred
method, since it is easier and minimizes the possibility of syntax errors.

� Enter the related table entries separated by semicolons. If you want to

override some related tables, but not all of them, you must use a semicolon
as a place-holder. For example, to change the first and third related table,
you would enter:

"FIRST=c:\mis\first.dbf;;THIRD=c:\mis\third.dbf".

Data Type

String

Availability

Design time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 261

ReportDirectory

Description

Specifies a default directory where the Viewer may look for the report or library
specified in ReportName or ReportLibrary.

Usage

[form.]ControlName.ReportDirectory[= DirectoryName$]

Example

RRReport1.ReportDirectory = "c:\mis\reports"

« Looks for the report in a directory called "c:\mis\reports." »

Comments

If the report file name specified in the ReportName or ReportLibrary property does
not contain full path information, then the Viewer will look for it in this directory.
The default report directory you specify with this property will override any default
report directory specified in the RRW.INI file.

Data Type

String

Availability

Design time; run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 262

ReportLibrary

Description

Specifies the library that contains the report to be printed.

Usage

[form.]ControlName.ReportLibrary[= LibraryFileName$]

Example

RRReport1.ReportLibrary = "c:\rrw\rrsample\rrsample.rp5"

« Selects the report library named "rrsample.rp5" in the c:\rrw\rrsample
directory. »

Comments

This property identifies the library that contains the report. The library name can
include a path.

If you don’t include a path, the Viewer searches for the file in the default library
directory specified in the ReportDirectory property. If no default is specified in

ReportDirectory, the Viewer searches for the library in the default directory
specified in the RRW.INI file. If RRW.INI is not present and no default library
directory is specified, the Viewer searches for the library in the current directory.

If you leave this property blank or if the library you specify cannot be found or
read, the Viewer will return error status and, optionally, display an error message

box (see DisplayError).

At design time, you can change this property in two ways:

� Double-click this property to display the General property page. Then click
the ellipsis button next to Report Name to display the Open dialog, which

allows you to select a report library file and browse drives, directories, and
files.

� Simply enter the file name into the settings box.

� Data Type; String; Availability; Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 263

ReportName

Description

Specifies the name of the report to be printed.

Usage

[form.]ControlName.ReportName[= ReportName$]

Example

RRReport1.ReportName = "Order Invoice.RRW"

« Selects the report named "Order Invoice." »

Comments

This property is required (unless ReportPick is set to 1 or 2). It contains the name

under which the report was saved. If the report is being retrieved from a library,
you must specify that library with the ReportLibrary property.

At design time, you can change this property in two ways:

� Double-click this property to display the General property page. Then
click the ellipsis button next to Report Name to display the Open Report

dialog (see Figure 4.8), which contains a list of report files in the
location specified in the ReportDirectory property.

Figure 4.8 Open Report Dialog Box

� Simply enter the report name into the settings box.

� Data Type; String; Availability; Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 264

ReportPick

Description

Allows the user to pick one or more reports to be printed from a list of reports in
the location specified by ReportDirectory.

Usage

[form.]ControlName.ReportPick [= PickOption%]

Example

RRReport1.ReportPick = 1

« Displays a list of reports and prints the highlighted report when the user selects

OK. »

Comments

This property is optional, and can contain one of the following values:

0 – Pick none (use report in ReportName property);

1 – Pick one (allow user to select one report);

2 – Pick many (allow user to select several reports).

If you set this property to 1 or 2, you do not need to set the ReportName
property; if you include both ReportPick and ReportName values, Viewer ignores
the ReportName.

To have the Viewer prompt the user to select a succession of reports, set this
property to 2 . When the value is 2, Viewer will prompt the user to select a report.

After Viewer executes the selected report, the user will then be prompted to select
another report. This prompt for report selection will repeat after each report until
the user selects Cancel.

Set this property to 1 to prompt the user to select just one report. When the value
is 1, Viewer will prompt the user to select a report (as with the 2 value), but will
not prompt for an additional report selection after the report has been executed.

Data Type

Integer (Enumerated)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 265

ResetControl

Description

Causes the control to reset all properties to their default states.

Usage

[form].RRReport1.ResetControl()

Example

RRReport1.ResetControl()

Comment

Use this method at runtime to clear all non-default values. It can be used to reset
the control to a known state.

Data Type

Void

Availability

Design Time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 266

ResetProperties

Description

Controls whether the custom control should reset its properties when a new report
is specified.

Usage

[form].ControlName.ResetProperties[= {TRUE|FALSE}]

Example

RRReport1. ResetProperties = TRUE

Comment

Use this property to clear out values of a prior report. This setting causes all

properties, except the properties visible from the General tab dialog, to be reset to
their default states.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 267

RunReport

Description

RunReport is a method that can be used to trigger the print, display, or export of
the report.

Usage

[form.]ControlName.RunReport(action)

Example

RRReport1.RunReport(1)

« Prints, displays, or exports the report, depending on the Destination property,
and does not return until the report is completed. »

Comments

Use a value of 1 or 2 in for RunReport to print, display, or export the report in

response to a user event. In most cases, it will be more convenient to set this
property to 1.

If set to 1, the action is synchronous, which means that the next line of Visual
Basic procedure code will not execute until the report is completed. The status of

the report will be returned in the LastErrorCode, LastErrorString, and
LastErrorPage properties.

If set to 2, the action is asynchronous, so that the report may still be running
when the next line of Visual Basic procedure code is executed. When the report

completes, its status is written into the status file.

Availability

Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 268

Scope

Description

Specifies the scope of records to use when the report is printed.

Usage

[form.]ControlName.Scope [= ScopeOption%]

Example

RRReport1.Scope = 2

« Ignores the low and high scope saved in the report and uses the scope
expressions in the LowScope and HighScope properties in place of them. »

Comments

This property is optional. Scope allows you to control the range of master table
records that should be included in the report. You can specify a range of record
numbers or index key values, ignore the scope saved with a report, or prompt the
user to enter a range at run time. When you specify scope values, the Viewer

reads only the records in the master table whose record number or index key is
within the specified range. You can often speed up a report by using scope values
with a master index. If you omit this field or leave it blank, the Viewer uses the

saved scope values.

Scope can contain one of four values:

0 – Saved. Use the scope values saved with the report.

1 – Entire. Ignore any scope values.

2 – Override. Override the saved scope values with the values in the LowScope

and HighScope properties.

3 – Prompt user. Allow the user to enter or change scope values at run time.

When Scope is set to 3, the dialog box shown in Figure 4.9 displays. If

WindowTitle is specified, the title bar will contain the WindowTitle. If
WindowTitle is blank or missing, the title bar will contain the report name.

Figure 4.9 High and Low Scope Dialog Box

If Scope is set to 2, the LowScope property specifies the starting value of the
scope and the HighScope property specifies the ending value of the scope. If

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 269

Scope is set to 0, 1, or 3, the Viewer ignores LowScope and HighScope.

If no master index was saved with the report (or added using the MasterIndex
property), the Viewer assumes the value is a record number. Otherwise, the

Viewer assumes the value is a key value in the master index. In this case, the
report begins reading the master table at the first record greater than or equal to
the LowScope value and stops reading the master table after the last record found
that is equal to or less than the HighScope value.

The range fully includes the end points. In other words, if you enter A as the low
value and M as the high value, the Viewer reads the first record in which the value
begins with A through the last record in which the value begins with M. For
example, if you have a customer table indexed on last name and you want to print

invoices for all customers whose name begins with a letter between A and M, enter
2 in Scope, the letter A in LowScope, and the letter M in HighScope.

All scope values must be character strings. Note that a date scope value must be
in the format mm/dd/yyyy.

Data Type

Integer (Enumerated)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 270

SortFields

Description

Specifies the field(s) that are to be used to sort your data when the report is
printed.

Usage

[form.]ControlName.SortFields(ArrayIndex)[= "+|-SortField$"]

Example

RRReport1.SortFields(0) = "+CUST.LNAME"

Comments

Sort fields can be database fields, calculated fields or total fields.

When setting this property at run time, use a separate line of code to specify each
sort field. The first sort field you specify must be assigned array index 0, the
second sort field must be assigned array index 1, etc. The index values you assign
must be continuous; no gaps are allowed (0,1,2 would be correct, but 0,1,3 would

be wrong).

Data Type

Array of strings

Availability

Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 271

SortFieldsString

Description

Specifies the field(s) that are to be used to sort your data when the report is
printed.

Usage

[form.]ControlName.SortFieldsString[= "+|-SortField$"]

Example

RRReport1.SortFieldsString = "+CUST.LNAME"

Comments

Sort fields can be database fields, calculated fields or total fields.

At design time, you can change this property array in two ways:

� Double-click this property to display the Sort property page. Clicking on the
down arrow next to each sort field will drop down a list of all fields used in the
report from which you can select.

� Enter the sort field names separated by semicolons. If you want to override

some sort fields, but not all of them, you must use a semicolon as a place-
holder. For example, to change the first and third sort field, you would enter
"Division;;Region".

� Data Type; String; Availability; Design time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 272

StartPage

Description

Specifies the page of the report to start printing.

Usage

[form.]ControlName.StartPage[= Page%]

Example

RRReport1.StartPage = 10

« Specifies that the report should start printing at page 10. »

Comments

This property is optional. The StartPage and EndPage properties allow you to

override the starting and ending page numbers saved with the report. The default
value for these properties is blank.

To specify page numbers, include a StartPage value, an EndPage value, or both. If
you specify both, EndPage must be equal to or greater than StartPage. For

example, users can restart a canceled report where it was interrupted by
specifying the starting page number as the StartPage value and 999999999 as the
EndPage value. To reprint one or more consecutive pages of a report, specify the
page numbers in the StartPage and EndPage properties. To print just one page,

specify the same page number for both properties.

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 273

StatusFileName

Description

Specifies the name and, optionally, the path for the Viewer status file.

Usage

[form.]ControlName.StatusFileName[=StatusFileName$]

Example

RRReport1.StatusFileName = "C:\TEMP\STATUS.TXT"

« Writes the status information into a file named STATUS.TXT in the TEMP
directory on drive C. »

Data Type

String

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 274

SuppressTitle

Description

Specifies whether to suppress any No records found Title band lines lines for a
report that contains no records.

Usage

[form.]ControlName.SuppressTitle[={TRUE|FALSE}]

Example

RRReport1.SuppressTitle = FALSE

« Title and Summary lines will be printed even when no records are found. »

Comments

Set SuppressTitle to TRUE to suppress printing of any no records found title lines
when the report contains no records.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 275

TestPattern

Description

Specifies whether or not to print a test pattern showing the layout of the report on
the page.

Usage

[form.]ControlName.TestPattern[= {True|False}]

Example

RRReport1.TestPattern = True

« Specifies that a test pattern of the report should be printed. »

Comments

This property is optional, and can be either True or False. True means to display a
prompt before printing the report to allow the user the option of printing a test
pattern. False means don’t offer a choice to print a test pattern.

A test pattern is useful for aligning forms in the printer. The user can print the test
pattern as many times as necessary and then print the report. If you enter True,

the Viewer displays a box containing OK, Cancel, and Print buttons. The user can
select OK and print as many test patterns as necessary to align the forms. Once
the forms are aligned, the user can select Print to begin printing the actual report.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 276

UpdateControl

Description

Specifies whether the properties of the control should be updated with the
properties of the report when a new report is selected.

Usage

[form.]ControlName.UpdateControl[= {True|False}]

Comments

Set this property to True if you want the current properties to reflect the current
report.

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 277

WindowBorderStyle

Description

Specifies the type of border for the preview window.

Usage

[form.]ControlName.WindowBorderStyle[= BorderStyle%]

Example

RRReport1.WindowBorderStyle = 2

« Sets a sizable border style for the preview window. »

Comments

Set this property to one of the following border styles if you are printing to a

preview window (if Destination = 1).

1 – Fixed (a window of a fixed size with a standard border);

2 – Sizable (a window that can be resized by the user).

Note that for compatibility with earlier versions of R&R, this parameter accepts

any of the following values:

0 (which formerly resulted in a borderless preview window) results in a fixed-
size window with a standard border.

1 results in a fixed-size window with a standard border.

2 results in a variable-size window with a standard border.

3 (which formerly resulted in a fixed-size window with a double-line border)

results in a fixed-size preview window with a standard border.

Data Type

Integer (Enumerated)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 278

WindowControlBox

Description

Specifies whether the preview window is to have a control (system menu) box in
the upper left corner when the report is printed to a preview window.

Usage

[form.]ControlName.WindowControlBox[= {True|False}]

Example

RRReport1.WindowControlBox = True

« Specifies that a control box (system menu) is to appear in the preview window.

»

Comments

Set this property to True if you are printing to a preview window (if Destination =

1) and if you want the window to contain a control box.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 279

WindowHeight

Description

Sets the height of the window when the report is printed to a preview window.

Usage

[form.]ControlName.WindowHeight[= Height%]

Example

RRReport1.WindowHeight = 300

« Sets the height of the preview window to 300 pixels, or about 3 inches on most
displays. »

Comments

The value for this property is expressed in pixels. Set this property if you are
printing to a preview window (if Destination = 1).

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 280

WindowLeft

Description

Sets the distance, in pixels, that the preview window is to appear from the left
edge of the screen.

Usage

[form.]ControlName.WindowLeft[= Distance%]

Example

RRReport1.WindowLeft = 100

« Sets the left edge of the preview window 100 pixels from the left edge of the

screen, about one inch on most displays. »

Comments

The value for this property is expressed in pixels. Set this property if you are
printing to a preview window (if Destination = 1).

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 281

WindowMaxButton

Description

Specifies whether the preview window is to have a maximize button when the
report is printed to a preview window.

Usage

[form.]ControlName.WindowMaxButton[= {True|False}]

Example

RRReport1.WindowMaxButton = False

« Specifies that no Maximize button is to appear in the preview window. »

Comments

Set this property to True if you are printing to a preview window (if Destination =
1), and you want the window to contain a maximize button.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 282

WindowMinButton

Description

Specifies whether the preview window is to have a minimize button when the
report is printed to a preview window.

Usage

[form.]ControlName.WindowMinButton[= {True|False}]

Example

RRReport1.WindowMinButton = True

« Specifies that a Minimize button is to appear in the preview window. »

Comments

Set this property to True if you are printing to a preview window (if Destination =
1). and you want the window to contain a minimize button.

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 283

WindowTitle

Description

Specifies the title you want to appear in the preview window title bar when the
report is printed to a preview window.

Usage

[form.]ControlName.WindowTitle[= Title$]

Example

RRReport1.WindowTitle = "Revenue Summary"

« Sets the title of the preview window (the string that appears on the title bar) to

"Revenue Summary." »

Comments

This property is optional. Set this property if you are printing to a preview window
(if Destination = 1), to specify a report title (for example, "Quarterly Profits") to
be displayed in the following places:

� The Title Bar of the Preview window;

� The Print Status window (if DisplayStatus = True);

� The title bars of the dialog box that displays when the Printer, Port,
Destination, or Scope value is a question mark.

If this property is blank, the report name will be used for the title.

When setting this property at run time, make sure that the title is enclosed in
quotes.

Data Type

String

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 284

WindowTop

Description

Sets the distance, in pixels, that the preview window is to appear from the top
edge of the screen.

Usage

[form.]ControlName.WindowTop[= Distance%]

Example

RRReport1.WindowTop = 100

« Sets the top edge of the preview window 100 pixels from the top of the screen,

or about one inch on most displays. »

Comments

The value for this property is expressed in pixels. Set this property if you are
printing to a preview window (if Destination = 1).

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 285

WindowWidth

Description

Specifies the width of the preview window in pixels.

Usage

[form.]ControlName.WindowWidth[= Width%]

Example

RRReport1.WindowWidth = 500

« Specifies a preview window 500 pixels wide, or about five inches on most
displays. »

Comments

The value for this property is expressed in pixels. Set this property if you are
printing to a preview window (if Destination = 0).

Data Type

Integer

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 286

WriteAllow

Description

Controls whether database users can modify the tables and indexes in use by
reports.

Usage

[form.]ControlName.WriteAllow[={True|False}]

Example

RRReport1.WriteAllow=False

« Prevent other applications from writing to the databases in use by the report. »

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 4: Using the Custom Control

R&R ReportWorks Xbase Developing Applications Page 287

XbaseEditor

Description

Specifies the type of memo editor that was used to create database memos for
reports.

Usage

[form.]ControlName.XbaseEditor[={True|False}]

Example

RRReport1.XbaseEditor = False

« Memo fields used in the report have been created using a memo editor other
than the standard Xbase memo editor. »

Data Type

Integer (Boolean)

Availability

Design time; Run time

Chapter 5 Using ASP to run reports

Overview

The Runtime ASP interface is a web server-based tool that allows you to execute

and communicate with your R&R reports using Active Server Pages (ASP) and an
IE compatible scripting language.

Technically it is the equivalent to sitting at the console of your web server,
selecting a report using the RRWRUN.EXE executable and then previewing the
results to the display. With the ASP interface, a web browser selects an ASP page

that resides on the web server and that page points to the report file. It then
launches a runtime process on the web server to run the report and delivers the
output to the web browser using a downloaded ActiveX control.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

Web Server Configuration

To use the ASP interface, ReportWorks must be installed on an intranet web server
and the reports that are created must be able to be run via runtime on the web
server console.

The next step is to register the ASP interface file RRWATL.DLL. This file is installed
in the \ActiveX folder of your ReportWorks installation.

You can use this command line to register this file:

REGSVR32 c:\program files\RR Infinity\ActiveX\RRWATL.DLL

Once registration is successful, you next need to set the web server environment
so that an anonymous web user can:

Locate and download the ActiveX control file RRPRVIEW.CAB

Read/write files in the TEMP directory

Execute RRWRUN.EXE

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

Using an ASP page to run reports

Once the appropriate files reports and permissions are set on the server, you then
create an ASP page where you set the name of the report to be run on the server
along with any additional runtime properties and the page delivers the report

output to the web client. A sample ASP page (RRSAMPLE.ASP) is provided in the
\ActiveX folder. This sample provides the basic required elements to execute a
report via ASP. You can use this file as the starting point for your own scripts.
Note that your ASP page must be placed on the web server in a directory where

script permissions have been enabled.

Running a report via an ASP page is really quite similar to running conventional

R&R runtime. In both cases, you invoke a saved report with a particular set of
criteria and then output the report results. For the ASP interface, input is always

done via an active server page and the output is always the delivery of an ActiveX
report window within a browser window.

The syntax used within the ASP page is similar to what you’d see if you were
generating runtime code using the custom control within an application like Visual

Basic. The major difference is that the control exists directly within the server and
not as an object embedded on a form within a program. You create an ASP page
that points to the report that you wish to run. When a browser opens the ASP

page, it initializes the server object, reads the report specific properties and
passes information to the R&R runtime DLL. The runtime DLL then in turn calls the
R&R runtime executable to process the report. The report output is sent to a
temporary PDI file whose content is then displayed in the report window on the

browser using the Report Viewer Control that is downloaded and installed on the
local machine from the RRPRVIEW.CAB that is present on the web server. The
report that is displayed in the browser retains all of its formatting and can be

scrolled and printed.

The runtime ASP interface allows you to use most of the functions (such as
changing a master file or specifying a query condition) that are available via
traditional runtime.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

The following differences exist between using ASP and using traditional runtime to
execute reports:

• ASP reports are always output to a browser report window where they can
then be printed to a local printer.

• Reports stored in report library files are not supported.

• File export options that are available via runtime.are not available.

• User prompt dialogs (such as displaying the interactive query dialog or using
parameteRR fields) are NOT available.

• User input to reports must be done via the definition of RIPARAM() based
calculated fields that can then be passed through the ASP page.

• The current default behavior for scope and query/filter is to include ALL
records rather than using saved report settings unless a value is explicitly
set within the ASP page.

For SQL reports, the report data source MUST be a System data source and NOT a
user or file data source since the browser client does not come in to the server as
an authenticated user.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

Active Server Page Structure

A runtime ASP page requires a number of elements to be present in order to
deliver a report to a browser window. There are also a number of optional
elements to control aspects of the report as well as the overall appearance of the

report viewer browser window.

Required Elements

The first required element within the ASP page is a CreateObject() call to the
appropriate control. For the Xbase version the control is RRATL.RRWControl and

for the SQL version it is RRATLRSW.Control.

Once the object is created, you set the report specific properties of that object.
Minimally you need to set reportName with a report specific name and runReport
to execute that report. You can optionally introduce a variety of properties and
methods to specify runtime options for the report such as a selection criteria or a

sort order.

Each available property and method is described later in this file

The "else" clause of the ASP contains a number of important sections. The first is
the path pointing to RRPRVIEW.CAB, the file containing the client-side ActiveX
components that gets added to the browser. To enable the browser and force the

download of the components, the URL path (not the local PC path) to this file
relative to the location of the ASP must be specified. This is done in the section of
the ASP where "codebase=" is specified. You should only change the path

preceding RRPRVIEW.CAB and leave the remainder of the line just as it appears in
sample page.

Adding additional formatting and HTML on the report page

The sample ASP page deliver a browser screen with the report displayed with the

report control window. You may want to embed additional HTML in your ASP pages
so that more than just the report itself will be displayed. This could be to provide
information relating to the report itself, instructions on printing, or to retain a
consistent graphical look and feel related to your other pages. You can edit the

HTML returned within the "else" clause of your ASP by placing valid HTML tags and
information within your page.

A simple example is shown below:

The title has been set to "The report you requested" and "Here’s Your Report!" has
been placed in the body section embedded within the <H1> tags:

<HTML>

<HEAD>

<TITLE>The Report you requested</TITLE>

</HEAD>

<BODY>

<H1>Here's Your Report!</H1>

<object WIDTH="85%" HEIGHT="85%". . .

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

Specifying the space allotted to the report window

You may want to control the amount of browser "real-estate" taken up by the
report displayer. Modifying the percentages in the <object WIDTH="85%"

HEIGHT="85%" allows you to do this. These figures define the percentage of the
browser window (height & width) that the report window will use.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

RRSample.ASP

<%

if Request("generatereport") = "true" then

Response.Buffer = TRUE ' For IIS 4 compatibility

set rr = Server.CreateObject("RSATL.RRWControl")

rr.reportName = "You must enter a valid report file name.RRW"

rr.runReport

else

%>

<HTML><HEAD>

<TITLE>Report Viewer Control Document</TITLE>

</HEAD><BODY>

<object WIDTH="85%" HEIGHT="85%"

CLASSID="CLSID:66960E23-DE25-11CF-876F-444553540000"

codebase="rrprview.cab#Version=2,0,0,4" id=RepView1>

<param NAME="LanguageID" VALUE="0409">

<param NAME="ReportURL" VALUE="<%=
Request.ServerVariables("SCRIPT_NAME") %>?generatereport=true">

</BODY>

</HTML>

<%

end if

%>

<embed WIDTH="95%" HEIGHT="95%"

CLASSID="CLSID:66960E23-DE25-11CF-876F-444553540000"

CODEBASE="rrprview.cab#Version=2,0,0,4"

TYPE="application/oleobject"

PARAM_ReportURL=""></object>

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

Troubleshooting

A prerequisite to successfully using the ASP interface is to ensure that that reports
can be successfully run using the runtime executable from the web server console.

When creating reports where you want to allow for parameter prompting, you need
to use RIPARAM() based calculated field instead of parameteRR fields since

parameteRR are designed to return dialog to the client screen which for is actually
the web server and not the local browser.

It is also important the server must have a "clear line of sight" to the data being

used in the report. This is important for file-based reports such as those Xbase
version and any SQL data sources that point to specific database locations on the
network. Using standard PC path notation and verification for your reports works
fine as long as everything resides on the server. However, for data that is remote

(i.e. mapped drives), it cannot be guaranteed that the anonymous internet user id
will be able to "see" that data as well. However, data that is visible over the
network, but stored on another server should be accessible via the UNC path back
to the data (\\servername\sharename\pathtodata\datafile.ext).

The ASP interface uses the RRPRVIEW.CAB ActiveX component to deliver reports.
You can test the functionality of this component by using either the Report
Designer or runtime to create and export the contents of a report to an ActiveX
PDI file along with an HTML container file with pointers to that PDI and to the

RRPRVIEW.CAB.

You should refer to the appropriate ReportWorks documentation for instructions on
ActiveX export. You can then access the HTML from a browser to verify that the
CAB can be correctly downloaded and that the static PDI file can be viewed. When

an ASP page is launched from a browser, if the local machine does not have the
ActiveX viewer control installed, then the user will be prompted to download and
install the control. Once the control is locally available, the report page will display
an empty report window as the report is generated to a temporary PDI file on the

server. When the file is complete, the report output will appear in the report
window.

There are however a number of things that may go wrong in this process. Some
are as simple as a minor typographical error in the ASP page and others may

require more extensive investigation. Some problems will result in an error
message display within the browser report window. For example an improperly set
TEMP environment variable or an invalid report name will be reported to the
browser. In general these errors should be reasonably easy to resolve based on

the specific error. Other error conditions may instead be reported at the server so
you need check both client and server if any problems result. Other error
conditions may never return an explicit error and the browser window may simply

fail to display a report.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

Troubleshooting Checklist

The following troubleshooting checklist should help you to find and correct errors

• Make sure that there is only one copy of RRWRUN.EXE and RRRPT32.DLL on

your server and that the installed version of these files come from the

installation. Having earlier versions of these files can cause a variety of
unexpected conditions and can prevent successful DLL registration of the
components.

• Verify that the R?WATL.DLL file has been correctly installed and registered.

• Verify that the report can run via conventional runtime on the server

• Verify that the ActiveX component can be successfully downloaded from the
server

• If the problem occurs across all reports, start with a simple single file
reports as the smallest test case.

• Setting a property to an invalid value can result in an "invalid report control
object" error

• For SQL version, make sure that you are using a System data source and
not a User data source.

• If a report is saved with the File->Print Print to file box checked the report
may either not display in the browser or the browser may get the invalid

report file type error show below. Note that this error can be returned
under other conditions as well so troubleshooting may take some careful
investigation of the problematic report.

Known Issues

The Xbase setMasterIndexinformation method is currently non-functional.

Setting filterUsage=0 in the Xbase version returns all records rather than those
selected by the saved query.

Images only display when they are stored in the ASP folder.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

ASP Properties and Methods

The following sections present detailed descriptions of the properties and methods
provided by the ASP interface. Each contains the data type returned, a brief
description of its functionality and syntax and a usage example.

Common Properties/Methods

reportName

filterUsage

filter

parameters

masterTableName

memoName

setGroupFieldAndNumber

Xbase only

dataDirectory

indexExtension

lowScope

highScope

writeAllow

SetMasterIndex

setRelationInformation

SQL only

dataSource

username

password

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

reportName

Available in Xbase and SQL

reportName = String

Specifies the report to be executed.

Required element.

You can only use reports stored as single compound files. Reports stored in report
library files cannot be used.

Example:

rr.reportName = "C:\InetPub\wwwroot\rr-rept\rr-reports\Customer.rrw"

Runs the report Customer.RRW

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

filterUsage

Available in Xbase and SQL

filterUsage = Integer

Specifies which report records will be returned.

Available values are:

0 - Saved

1 - Entire

2 - Override

If not explicitly set, the default value is 1 (Entire)

Example:

rr.filterUsage = 1 Runs report ignoring any saved filter.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

filter

Available in Xbase and SQL

filter = String

Specifies the record selection criteria for the report.

You must use R&R expression syntax.

The filter expression is only evaluated when filterUsage is set to 2 Override.

Maximum size is 1024 characters.

Example:

rr.filterUsage = 2rr.filter = "hrp->p_empno = '30362'"

Selects records where the character field hrp->empno is equal to 30362. This filter
is used in place of any filter that has been saved with the report.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

parameters

Available in Xbase and SQL

parameters(index as String) = newVal as String;

Used to supply values for RIPARAM() field expressions. Use one line for each

parameter value

If you specify a parameter that does not appear in the report, you will get an
"Undefined job control variable" error in the browser’s report window.

Example:

rr.parameters("P1")="Hello from P1"

rr.parameters("P2")="Hello from P2"

Calculated expression RIPARAM("P1") will evaluate to "Hello from P1"

Calculated expression RIPARAM("P2") will evaluate to "Hello from P2" Page

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

masterTableName

Available in Xbase and SQL

masterTableName = String

Used to override the master file that is saved with the report.

Example:

rr.masterTableName="C:\myfiles\customer.dbf"

Uses C:\myfiles\customer.dbf in place of the saved master file.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

memoName

Available in Xbase and SQL

memoName = String

Used to override any text file that is saved with the report.

Example:

rr.memoName="C:\myfiles\newdata.txt"

Uses C:\myfiles\newdata.txt in place of the saved text file.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

setSortFieldAndNumber

Available in Xbase and SQL

setGroupFieldAndNumber

Available in Xbase and SQL

setSortFieldAndNumber fieldName as String, sortNumber as Integer

setGroupFieldAndNumber fieldName as String, groupNumber as Integer

Used to supply sort and group fields to report. If you specify invalid field name or

group number report, you will get an "Unknown or ambiguous sort/group field" or
"Invalid sort/group field number" error in the browser’s report window.

Examples:

rr.setSortFieldAndNumber "Company","1"

rr.setSortFieldAndNumber "LAST_NAME","2"

rr.setGroupFieldAndNumber "LAST_NAME","1"

Adds Company as sort field1, LAST_NAME as sort field 2 and LAST_NAME as group

field 1.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

dataDirectory

Available in Xbase only

dataDirectory = String

Use dataDirectory to replace the default data directory specified in RRW.INI. Note

that this directory is only used to locate files when they cannot be found using the
saved file path. It does not override the saved file path.

Example:

rr.dataDirectory="C:\data\file2005"

Search for data files in C:\data\file2005" when they cannot be found in the saved

location.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

indexExtension

Available in Xbase only

indexExtension = Integer

The index extension is used to locate indexes that are specified without extensions

or that cannot be found using the extensions saved with the report.

The possible values and meanings are:

0 none

1 CDX

2 IDX

3 MDX

4 NDX

5 NSX

6 NTX

7 WDX

Example:

rr.indexExtension=1

If a saved index has file name CUST.MDX and this index cannot be found, use
CUST.CDX instead.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

lowScope

Available in Xbase only

lowScope = String

Used to control starting value for master file records based on master index key.

The lowScope value is only evaluated when scopeUsage is set to 2 (Override).

Example:

rr.scopeUsage=2

rr.lowScope ="A"

Start reading master file records beginning with value A.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

highScope

Available in Xbase only

highScope = String

Used to control starting value for master file records based on master index key.

The highScope value is only evaluated when scopeUsage is set to 2 Override.

Example:

rr.scopeUsage=2

rr.highScope ="D"

Stop reading master file records after value D.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

writeAllow

Available in Xbase only

writeAllow = Boolean

Used to control shared access to database files.

Available values are:

0 Report cannot access files in write use by other apps

non-zero Report will access files in write use by other apps

Example:

rr.writeAllow=1

Allow database users to make updates to data files while report is in use.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

setMasterIndex

Available in Xbase only

setMasterIndexInformation indexName as String, indexType as String,

tag as String

Used to supply a master index to a report. The index type may be N (numeric), D

(date) or C (character).

Example:

rr.setMasterIndexInformation" C:\myfiles\customer.cdx ","N","CUSTNO"

Sets master index to the numeric tag CUSTNO of the C:\myfiles\customer.cdx
compound index file.

Chapter 5: Using ASP to run reports

R&R ReportWorks Xbase Developing Applications

setRelationInformation

Available in Xbase only

setRelationInformation filepath as String, indexpath as String, tag as

String, alias as String, aliasNumber as Integer

Used to change a related file in the report.

Examples:

rr.setRelationInformation "C:\

\sample\ord2006.dbf","C:\sample\ord2006.cdx","custno","ord2005","1"

rr.setRelationInformation

"C:\sample\inv2006.dbf","C:\\sample\inv2006.cdx","custno","inv2006","2"

Changes related file for current related alias ord2005 to ord2006.dbf using tag

custno of ord2005.cdx and changes related file for current related alias inv2005 to

inv2006.dbf using tag custno of inv2006.cdx

Chapter 6 R&R Open Scripting

Introduction (Open Scripting)

R&R for Windows provides an open architecture for report generation. Called "R&R

Open Scripting," this new architecture allows developers to create application-
specific reporting front ends that use R&R’s sophisticated reporting engine for
actual report generation. R&R Open Scripting allows any developer who can
generate text files to communicate effectively with R&R.

You can take advantage of the R&R Open Scripting interface to generate a report
in either of two ways. The Report Wizards make use of this script mechanism to
pass a user-defined report specification from the R&R Wizards to the main Report
Designer executable. In order to provide a custom interface for report creation,

developers can configure Report Designer to integrate their own Windows
executable (EXE) in place of the R&R Wizard application.

In addition to the Report Wizard interface, a report can be generated by passing a
script file pathname on the Report Designer command line. When Report Designer
is invoked in this way, the script file is read and the report is created

automatically. Passing a script file on the command line requires that a master
table pathname be specified in the Report section of the script file. See the Script
File Format section in this chapter for information about the contents of the script

file.

Explanation of R&R Open Scripting is presented in the following sections:

• Custom Report Wizards

• Script File Format

• Script Command-Line Argument (/S)

• Report Wizard Input File

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 290

Custom Report Wizards

The R&R Open Scripting interface allows developers to integrate their own
intelligent front ends to their applications. Through this mechanism you can
provide a custom user interface to gather the information needed to generate a
report. As you will see, integrating your own custom user interface into R&R is

very simple.

Open Scripting can also be used to generate reports with the Viewer. You can
create a script file and have it executed by the Viewer to define and run a new
report. To do so, you would supply the script file name to the Viewer in any of the

following ways:

• as the RI_REPORT field value in a Viewer control file;

• as an argument to the chooseReport function of the Viewer DLL;

• as an element of the ReportName property of the custom control.

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 291

Configuring the Custom Application

To replace the R&R Wizards program with your own, simply add the following
settings to the R&R initialization file (RRW.INI) located in your Windows directory:

[Special]

WizardEXE=C:\RR\MYWIZARD.EXE

If the [Special] section already exists, add the WizardEXE keyword to the
existing section.

Note that if a full pathname is not specified for the executable file, Windows will
search for it in the following order:

1. Current directory;

2. Windows directory;

3. Windows System directory;

4. The Report Designer program directory;

5. The DOS path;

6. Directories mapped on a network.

To restore the built-in Report Wizards, simply remove the WizardEXE setting
from the initialization file.

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 292

Invoking the Custom Application

As is the case with the built-in Report Wizards, a custom application is invoked
from either the Report Designer startup dialog or from the File New dialog. (Note
that the Options ⇒ Preferences dialog provides "File New" settings that allow

these dialogs to be bypassed). After Report Wizards is selected and a database
table is chosen, Report Designer immediately invokes the application specified in
the initialization file. While the custom application is active, Report Designer is
disabled; it is enabled when the custom application terminates.

Three arguments are passed to the custom application on the command line.
These arguments are separated by semicolons (;). The first is the pathname to an
"input file" containing information used by the Wizards. The second argument is
the pathname to the script file in which the report information is to be written. The
third argument is the complete pathname, including drive specifier, of the master

database table selected within Report Designer. The master database table passed
on the command line must be used by the custom application as the basis for
report generation. For example, the following is a valid command line to the

custom application:

C:\WIN\TEMP\WZI.TMP;C:\WIN\TEMP\WZO.TMP;C:\RR\EMP.DBF;

The script file is read when the custom application terminates. After validating the
contents of the script file, Report Designer generates the report and performs any
actions specified, such as previewing the report. Report Designer will indicate any

errors detected by displaying an error message box identifying the invalid line in
the file.

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 293

Script File Format

The R&R script file format is similar to that of a Microsoft Windows initialization
(INI) file. Script files are made up of a series of sections that contain keyword
definitions. However, these script files may contain multiple instances of a

particular keyword in a given section and duplicate instances of a given section
name, which is generally not the case with Windows initialization files.

The general rules that apply to the format of script files are as follows:

� Commas are used to separate data on a given line. Therefore field names
may not contain commas; in addition, decimal values (field locations,

margins, etc.) must always use a period as the decimal point and all
dimensions are in inches.

� Blank lines or lines beginning with a semicolon (considered comment lines)

are ignored.

� The maximum line length is 300 characters. Line continuation is not
supported.

� All Boolean values are set by specifying either T or F.

� Missing parameters that are optional, such as margins or page size, will be
set to default report values. Missing field length parameters will be set to the
values stored in the database table.

� All field definitions specified will be inserted on the layout.

� All field location values are defined in hundredths of an inch. Values are

specified as absolute (1.00) or relative (+1.00). Relative field locations
are based on the end of any previously defined field on the line. Absolute
column positions should be computed based on the Pitch specification in the

[System] section of the input file. (Take into account the left margin
setting when defining field locations — for example, if the left margin is 0.5
inches and field location value is 1.00, the field will be placed 1.50 inches
from the left edge of the page.)

� Field alignment is specified by numeric values ranging from zero to five:
0=Left; 1=Center; 2=Right; 3=Wrap Left; 4=Wrap Right; 5=Wrap Fully
Justified. Values 0 through 2 may be applied to any field. Values 3 through
5 may be applied only to character, memo, or logical fields.

� Field locations are based on field alignment. The location for a left-aligned
field is the left edge of the field. The location for a right-aligned field is the
right edge of the field. The location for a center-aligned field is the center of

the field. The maximum field location is 25.00.

� Page margin values are defined in hundredths of an inch.

� Lines within a particular band must be specified in the order in which they are

to appear in the report.

� Calculations and totals must be defined prior to reference by other fields.

Calculated and total field names must be unique.

� Optional field style is specified as a combination of the letters BUIS, which
can be combined to indicate Bold, Italic, Underscore, and Strikeout.

� Total field expressions are specified by separating the four required

parameters by commas: Type, Reset, Accumulation, Running.

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 294

� Commas are used as place holders and may be omitted when defaulting

trailing parameters on a line.

� Scripts passed to R&R via the /S command-line argument must supply a
master table name in the REPORT section.

The following section provides a breakdown of the script file support in this version
of R&R.

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 295

Script File Sections and Keywords

The report sections and keywords used in this version of Report Designer are
indicated on the following pages. All sections and keywords are optional, with the
exception of the MasterTable= keyword in the Report section, which is required

when a script file is passed to Report Designer on the command line. This keyword
is ignored if specified in a script file generated by a custom application that
replaces the R&R Report Wizards.

REPORT SECTION

[Report]
MasterTable=pathname

If Report Designer is called with a script file as a command-line argument, the
MasterTable argument will be used as the table within the specified database to be
used to generate the report described in the remainder of the script file.

ACTION SECTION

R&R Open Scripting currently supports two menu "actions." These optional

commands allow for printing or previewing the report immediately after it

is generated. Only one menu action should be specified for each script. If

more than one action is specified, only the first one will be performed.

[Actions]
Menu=FilePrint
Menu=FilePrintPreview

PAGE FORMAT SECTION

[PageFormat]

PageSize=(0: Letter; 1:Legal; 2: Executive; 3: A4)
TopMargin=(Inches)
BottomMargin=(Inches)

LeftMargin=(Inches)
RightMargin=(Inches)
Landscape=(T or F)

InterlineSpacing=(T or F)
PreviewZoom=(0: Minimum; 1: Mid-level; 2: Maximum)

RECORD FORMAT SECTION

[RecordFormat]
AveryLabel=(Label Name)

RecordsAcross=(1 to 99)
RecordWidth=(Inches)
RecordHeight=(Inches)
PrintColsAcross=(T or F)

CompressRecordGroup=(T or F)
SuppressRecordLines=(T or F)
BeginLineOnSemi=(T or F)
HeadFootSummary=(T or F)

BreakRecordArea=(T or F)

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 296

SORT SECTION

Sort levels must be declared in contiguous order (no gaps). Sort fields will

be copied to group fields up until an existing group field definition (see

below) is encountered. Setting "SortOrderN=T" indicates ascending order.

[Sort]
SortField1=FieldName
SortOrder1=(T or F)

through:
SortField8=FieldName
SortOrder8=(T or F)

GROUP SECTION

Group fields must be declared in contiguous order (no gaps).

[Group]

GroupField1=FieldName
through:

GroupField8=FieldName

BAND LINE SECTION

Band lines are created by placing band sections into the script file. One

band line will be created for each band line section that is entered. Fields

are positioned on each line by placing the field definition keywords

(described below) within the appropriate band line section.

[Title]
[PageHeader]
[GroupHeader1] through [GroupHeader8]
[Record]

[GroupFooter1] through [GroupFooter8]
[PageFooter]
[Summary]

FIELD DEFINITION KEYWORDS

The following field definition keywords must be placed within the

appropriate band line section. Field definitions are indicated by a leading

keyword, such as "CharField=", followed by a series of parameters

separated by commas.

Here is an example of a database character field definition that will be

placed on a Record line. Field name is CUSTNAME; trim is True; location is

1.00 inches; alignment is left; style is Underscored; and length is zero (use
the field length specified in the master table).

Example: [Record]

CharField=CUSTNAME, T, 1.00, 0, U, 0

DATABASE CHARACTER FIELD

CharField=Name (required),
Trim (T or F),
Location,
Alignment,

Style (BUIS),
Length

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 297

DATABASE NUMERIC FIELD

NumField=Name (required),
Trim (T or F),

Location,
Alignment,
Style (BUIS),
Integers,

Decimals,
Numeric picture:
0: Fixed; 1: Scientific; 2: Currency; 3: Comma; 4: General;

5: Percent

DATABASE DATE FIELD

DateField=Name (required),

Trim (T or F),

Location,

Alignment,

Style (BUIS),

Date picture:

0: dd-mmm-yy 12: dd/mm/yy

1: dd-mmm-yyyy 13: dd/mm/yyyy

2: dd-mmm 14: dd.mm.yy

3: mmm-yy 15: dd.mm.yyyy

4: mmm-yyyy 16: yy-mm-dd

5: mmmm d, yyyy 17: yyyy-mm-dd

6: d mmmm yyyy 18: mm/dd

7: mmmm yyyy 19: dd/mm

8: mmmm d 20: dd.mm

9: d mmmm 21: mm-dd

10: mm/dd/yy 22: Long Regional

11: mm/dd/yyyy 23: Short Regional

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 298

DATABASE DATE/TIME FIELD

DateTimeField=Name (required),

Trim (T or F),

Location,

Alignment,

Style (BUIS),

Date picture:

0: dd-mmm-yy 12: dd/mm/yy

1: dd-mmm-yyyy 13: dd/mm/yyyy

2: dd-mmm 14: dd.mm.yy

3: mmm-yy 15: dd.mm.yyyy

4: mmm-yyyy 16: yy-mm-dd

5: mmmm d, yyyy 17: yyyy-mm-dd

6: d mmmm yyyy 18: mm/dd

7: mmmm yyyy 19: dd/mm

8: mmmm d 20: dd.mm

9: d mmmm 21: mm-dd

10: mm/dd/yy 22: Long Regional

11: mm/dd/yyyy 23: Short Regional

Time picture:

0: h:mm

1: hh:mm

2: h:mm:ss

3: hh:mm:ss

4: h:mm am

5: hh:mm am

6: h:mm:ss am

7: hh:mm:ss am

8: Regional

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 299

DATABASE TIME FIELD

TimeField=Name (required),

Trim (T or F),
Location,
Alignment,
Style (BUIS),

Time picture:

0: h:mm

1: hh:mm

2: h:mm:ss

3: hh:mm:ss

4: h:mm am

5: hh:mm am

6: h:mm:ss am

7: hh:mm:ss am

8: Regional

TEXT FIELD

TextField=Text (required, placed within double quotes),
Trim (T or F),

Location,
Alignment,
Style (BUIS)

CALCULATION CHARACTER

CalcChar=Name (required),

Trim (T or F),
Location,
Alignment,
Style (BUIS),

Length (required),
Expression:
Calculated Field: Standard expression format

(within double quotes), or
Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulatio

n
Running

0: Count G: Grand A: Automatic T (Running)

3:
Minimum

P: Page E: Every F
(Preprocessed)

4:

Maximum

1-8:

Group

P: Page

1-8: Group

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 300

CALCULATION NUMERIC

CalcNum=Name (required),

Trim (T or F),
Location,
Alignment,
Style (BUIS),

Integers (required),
Decimals (required),
Numeric picture:
0: Fixed; 1: Scientific; 2: Currency; 3: Comma; 4: General;

5: Percent

Expression:
Calculated Field: Standard expression format
(within double quotes) or,
Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulatio

n

Running

0: Count G: Grand A: Automatic T (Running)

1: Sum P: Page E: Every F

(Preprocessed)

2: Average 1-8:
Group

3:
Minimum

4:
Maximum

5:

Standard

Deviation

6:
Variance

CALCULATION DATE

P: Page 1–

8: Group

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 301

CalcDate=Name (required),
Trim (T or F),

Location,
Alignment,
Style (BUIS),

Picture (see DATABASE DATE FIELD above)

Expression:
Calculated Field: Standard expression format
(within double quotes) or,

Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulatio
n

Running

0: Count G: Grand A: Automatic T (Running)

3: Min P: Page E: Every F
(Preprocessed)

4: Max 1-8: Group P: Page

1–8: Group

CALCULATION DATE/TIME

CalcDateTime=Name (required),

Trim (T or F),

Location,

Alignment,

Style (BUIS),

Date picture (see DATABASE DATE/TIME FIELD above)

Time picture (see DATABASE DATE/TIME FIELD above)

Expression:

Calculated Field: Standard expression format

(within double quotes) or,
Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulatio

n
Running

0: Count G: Grand A: Automatic T (Running)

3: Min P: Page E: Every F
(Preprocessed)

4: Max 1-8: Group P: Page

1-8: Group

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 302

CALCULATION TIME

CalcTime=Name (required),

Trim (T or F),

Location,

Alignment,

Style (BUIS),

Time picture (see DATABASE TIME FIELD above)

Expression:

Calculated Field: Standard expression format
(within double quotes)

or,

Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulatio
n

Running

0: Count G: Grand A: Automatic T (Running)

3: Min P: Page E: Every F

(Preprocessed)

4: Max 1-8: Group P: Page

1-8: Group

POINTSIZE

PointSize=Size in points

R&R Open Scripting uses the default point size set in Options ⇒ Default Settings

for all fields. You can use the PointSize keyword to specify a new point size.

Include the PointSize keyword in any Band Line Definition section to set a point
size for all subsequent fields specified until another PointSize keyword is
encountered.

In the following example, PointSize=16.0 changes the point size to 16 for the

DEPARTMENT text field and to 14 for the FULLNAME field. PointSize=0 then
returns the point size to the default for the SALARY field.

;BAND LINE DEFINITION SECTION

[PageHeader]

PointSize=16.0

TextField="DEPARTMENT", F,0.0, 0, U

PointSize=14.0

TextField="FULLNAME", F,2.5, 0, U

PointSize=0

TextField="SALARY", F,6.0, 2, U

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 303

Sample Script Output

A sample label script generated by the R&R Report Wizards is shown below.
Although the script is relatively simple, it generates a fully formatted report
containing report parameters such as sort and group information, various report

bands, total fields and calculated fields. Note that the [Group] section is not
required, since the group settings are automatically copied from the sort settings.
Because the FilePrintPreview keyword has been specified as the menu action in
the [Actions] section, the report will be previewed automatically after it has been

generated.

; REPORT SECTION
[Report]

MasterTable=c:\data\employee.dbf

; ACTION SECTION
[Actions]

Menu=FilePrintPreview

; PAGE FORMAT SECTION
[PageFormat]

PageSize=0

TopMargin=.5

BottomMargin=.5

LeftMargin=.5

RightMargin=.5

; BAND LINE DEFINITION SECTION

[Title]

TextField="DBRSAMPL", F, 0.00, 0

TextField="*** R&R Grouped Columnar Report ***",F,3.75,1
CalcChar=wizDate,F,7.5,2,,8,"DTOC(date())"

[Title]

[GroupHeader1]

CharField=DEPARTMENT,F,0.0,0,BI

[GroupHeader1]

TextField="DEPARTMENT",F,0.0,0,BU

TextField="FULLNAME",F,1.7,0,BU

TextField="HIRE_DATE",F,4.5,1,BU

TextField="SALARY",F,6.0,2,BU

[Record]

CharField=DEPARTMENT,F,0.0

CharField=FULLNAME,F,1.7

DateField=HIRE_DATE,F,4.5,1

NumField=SALARY,F,6.0,2

[PageFooter]

[PageFooter]

TextField="Page ",F,3,1,B

CalcNum=wizPage,T,4.5,2,B,3,0,0,"PageNo()"

[GroupFooter1]

CalcNum=wizGpTot3,F,6.0,2,,,,0,2,SALARY,1,A,T

[Summary]

CalcNum=wizGrTot3,F,6.0,2,,,,0,2,SALARY,G,A,T

; SORT SECTION

[Sort]

SortField1=DEPARTMENT

SortField2=FULLNAME

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 304

Script Command-Line Argument (/S)

A script file may be passed on the Report Designer command line by appending
the pathname of the script file to the /S switch:

/SC:\RR\SCRIPT.TXT

When Report Designer starts, the script file will be opened and validated. If no
errors are encountered the report will be generated and any actions requested,
such as previewing the report, will be performed.

Note: When a script file argument is passed to Report Designer, command-line
arguments /L (library path), /R (report name), /T (table name), and /I (table
name/instant report) are ignored.

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 305

Report Wizard Input File

Report Designer creates a temporary input file that is used by the R&R Wizards.
This input file contains information that is useful to users of the R&R Open
Scripting interface. The input file format is similar to that of a Microsoft Windows

initialization (INI) file. These files are made up of a series of sections that contain
keyword definitions. (Although the information passed in the input file is used by
the R&R Report Wizards, this file may be ignored by any custom application.)

The sections and keywords placed in the input file are indicated in the following
paragraphs. Some sections and keywords will always be present; others are
optional and depend on the number of records in the table passed to the Wizards.

[System]

Product=0 (RRW)

Pitch=12 (Pitch of default font)

PageWidth=7.50 (Default width minus left/right margins)

The TableDef section lists the supported database fields in the table passed on the

command line, including the data type and field lengths. For numeric fields, the
integer and decimals places are specified.

The data types are as follows:

0: Character 4: Memo

1: Numeric 5: Date/Time

2: Date 6: Time

3: Logical

The following is a sample TableDef section for a master table containing six fields.

Note that the VALUE field is a numeric field and includes integer and decimal
places instead of a single field length.

[TableDef]

NAME=0,21

STREET=0,17

CITY=0,12

STATE=0,2

ZIP=0,5

VALUE=1,5,0

Chapter 5: Open Scripting

R&R ReportWorks Xbase Developing Applications Page 306

Up to twenty rows of result data from the table passed to the Report Wizards are
included in the input file. Each of these records is placed in a separate section,
labeled Row1 through Row20. Data in each field is truncated to 50 characters.
Here are samples of two rows from the database table described above:

[Row1]

NAME=Ashley, Steve

STREET=100 Main St

CITY=Westboro

STATE=MA

ZIP=01581

VALUE=38500

[Row2]

NAME=Axelhouse, Jim

STREET=201 Oak Ave

CITY=Northboro

STATE=MA

ZIP=01532

VALUE=25500

Chapter 7 Interfacing to Application DLLs

Introduction (Interfacing to DLLS)

R&R includes a special function, CDLL(), that allows you to call a function in a

Windows Dynamic-Link Library (DLL) from a report. You might use CDLL() when
you want to write a DLL-based function to perform an operation that R&R’s UDFs
don’t support, such as a trigonometric function. CDLL() also provides access to
functions that are used by other elements of your application, since DLLs are

available to all parts of a Windows application.

Syntax

CDLL() takes three string arguments and returns a string value. The syntax is:

CDLL(string1,string2,string3)

where string1 is the name of the DLL that contains the function, string2 is the
name of the function, and string3 is an argument being passed to the DLL
function. (Note that in Windows 95 and Windows NT, DLL function names are case
sensitive.) You can use R&R functions to convert the argument from other data

types and to return other data types. For example, the calculated field expression

CDLL("CONVERTS.DLL","MILES_KILO",STR(DISTANCE))

uses the STR function to convert the decimal value of DISTANCE into a character
string and passes the string value to the MILES_KILO function in CONVERTS.DLL,
which converts the distance in miles to kilometers.

CDLL() expects a boolean return value from the called DLL function: true to
indicate the function executed successfully, or false to indicate an error. If the DLL

returns a false value, CDLL() returns an error string. If the DLL function executes
successfully, it should overwrite its input string with the output string to be
returned by the CDLL() function. R&R passes the input and output strings using

an 8000-byte buffer.

R&R ReportWorks XbaseDeveloping Applications Page 308

Chapter 6: Interfacing to Application DLL’s

Example

This example uses CDLL() to call the functions RR_SIN, RR_COS, and RR_TAN

from TRIGS.DLL. The functions are used to return the sine, cosine, and tangent
values of the field DEGREES. Since CDLL() takes an input string and produces an
output string, we first created three UDFs that take the value of DEGREES as a
numeric and return its value as a numeric. These values are converted to

character strings before being passed to TRIG.DLL. The three UDFs and their
declarations and formulas are:

SIN(N_DEGREES) =
VAL(CDLL("TRIG.DLL","RR_SIN",STR(DEGREES,6,0)))

COS(N_DEGREES) =
VAL(CDLL("TRIG.DLL","RR_COS",STR(DEGREES,6,0)))

TAN(N_DEGREES) =
VAL(CDLL("TRIG.DLL","RR_TAN",STR(DEGREES,6,0)))

In each UDF formula, the STR function converts the numeric value of DEGREES

into a character string, as required for the third argument to CDLL(). The second
argument of STR specifies the character length of the string; the third argument
specifies the number of decimal places. The VAL function converts the string result

of CDLL() into a numeric representation, which is more useful for such functions.

Creating these UDFs allows you to supply the DEGREES argument as a numeric
value and return it as a numeric value; the conversion to string representation and
back is "hidden." To use these UDFs to access the DLL functions, you create

calculated fields whose expressions supply the DEGREES as numeric arguments to
SIN(), COS(), and TAN(). Note the following:

� Although you can pass only a single argument to a DLL, that string can
contain multiple arguments that can be parsed by the DLL function. The

single string value returned by the function can also contain multiple values
that can be parsed within a calculated field expression.

� If you use CDLL() in reports you plan to distribute for use with the Viewer,
make sure that the referenced DLLs are available when the Viewer is

executed.

� To improve performance of reports using the CDLL() function, you can pre-
load the called DLL file using a command line switch when you start Report

Writer. For the Report Designer (RRW.EXE) you use the switch /D followed
by the path/DLL filename. For runtime (RRWRUN.EXE) you use the switch
/AL followed by the path/DLL filename.

Chapter 8 Distributing Reports

Introduction (Distributing Reports)

This chapter provides information that is particularly useful to application

developers who are creating reports for distribution to other users, whether the
reports are designed for use interactively or with the Viewer. Information on
required files for distributing reports is presented in the following sections:

� Distribution Files for the Viewer Executable

� Distribution Files for the Viewer DLL

� Distribution Files for the OCX

� Retrieving Report Files

� Consistency Checking

Chapter8: Distributing Reports

R&R ReportWorks Xbase Developing Applications Page 310

Distribution Files for the Viewer Executable

Figure 7.1 lists required and optional files to be distributed in order to enable users
to run reports with the Viewer executable. You can specify locations for some of
these files either with command switches or with the Viewer control fields.

Note that Report Designer saves the location of tables, indexes, image files, and

text memo files with the report. The Viewer will automatically find these files if
they are in the saved locations. If they are not in the saved locations, the Viewer
will look for them in the default directories specified on the Viewer command line
or in the RRW.INI file, if it is available. If the report files are not in either of these

locations, use the parameters in the Viewer control file to specify file locations.

If you make RRW.INI available to users, it should be placed in the user’s Windows
directory. The UDF library file, RR.UDF, and the required DLL files (except as

noted) should be in the same directory as the Viewer executable, RRWRUN.EXE.

Note also that in order to export reports to Excel Chart or PivotTable, your users
must have Excel 5.0 (or later) installed on their systems.

File Description Location

RRWRUN.EXE The Viewer executable
program. Required.

Program
directory

RRPD.DLL The R&R printer DLL.
Required.

Program
directory

LFBMP13N.DLL Image import files. Required if Program

LFCMP13N.DLL

LFFAX13N.DLL

LFGIF13N.DLL

LFPCX13N.DLL

LFPNG13N.DLL

LFTGA13N.DLL

LFWMF13N.DLL

LFWPG13.DLL

LTCLR13N.DLL

LTDIS13N.DLL

LTFIL13N.DLL
LTKRN13N.DLL

reports contain images. directory

R&R ReportWorks Xbase Developing Applications Page 311

Chapter 7: Distributing Reports

File Description Location

MFC42.DLL
(6.00.8447.0 or
greater)

MFC shared library Windows
System
directory

GSW32.EXE

GSWAG32.DLL

GSWDLL32.DLL

Graphics library

Required only if report has

embedded chart

Windows
system

directory

RRTXTX.DLL

RRDBFX.DLL

RRWKSX.DLL

RRTFX.DLL

RRHTML.DLL

RRVIEWX.DLL

Required only if your Viewer
reports have Export

destinations of Text, Xbase,
Worksheet, RTF, HTML, or
ActiveX Viewer control,

respectively.

Program
directory

RRCSVX.DLL Required only if your Viewer
reports have Export
destinations of Text
Data/Word Merge

Program
directory

RRCHART.EXE

RRXCHART.DLL

Required only if your Viewer
reports have Export
destinations of Excel Chart

Program
directory

RRAUTO.EXE

RRXTAB.DLL

Required only if your Viewer
reports have Export
destinations of Excel Pivot
table

Program
directory

MSVBVM60.DLL Required only if your Viewer
reports have Export

destinations of Excel Chart or
Pivot table

Windows
System

directory

RRPRVIEW.CAB Required only if your Viewer
reports have Export
destinations of ActiveX

Copy to
location
referenced
in HTML

page

RR.UDF

SYSRR.UDF

User-defined function file.
Required if your Viewer
reports use any user-defined
functions.

Program
directory

R&R ReportWorks Xbase Developing Applications Page 312

Chapter 7: Distributing Reports

File Description Location

RRW.INI The R&R configuration file; it
is optional and can be
customized for different users.
If RRW.INI is in the Windows

directory, Viewer uses the
defaults defined in that file.
However, command-line
switches take precedence; any

setting you specify using a
command-line switch will
always override the

corresponding RRW.INI
setting.

Windows
directory

RRW.SRT A text file that controls case
sensitivity and character
collation. Optional.

Program
directory

Windows 3.1
ACFPDF16.DRV
PDFITF16.DLL

R&R PDF Export printer driver.
Note that file requirements
depend on the runtime

Windows 95/98
operating system.

ACFPDF.DRV
PDFINTF.DLL
CDINTF.DLL

NT/XP/2000
ACFPDF.DLL
ACFPDFUI.DLL

PDFMON.DLL
PDFINTF.DLL
ACFPDF.TXT
CDINTF.DLL

Optional.

Program
directory

In addition to the above files you also need to distribute your report
files, the required data files, and any runtime control file or table.

Figure 7.1 Viewer Distribution Files

R&R ReportWorks Xbase Developing Applications Page 313

Chapter 7: Distributing Reports

Distribution Files for the Viewer DLL

In addition to the required files listed in Figure 7.1, you must include RRRPT32.DLL
when distributing reports for Viewer access using the Viewer DLL. Your user(s)
should place this DLL in the Windows System directory.

Note that since the Viewer DLL communicates directly with the Viewer executable,

a control table or file is not required unless you need one for use with the
getRuntimeRecord function.

If the Viewer executable (RRWRUN.EXE) will not be in the same directory as the
application that calls the Viewer DLL, modify the ProgDir32 setting in the

[Defaults] section of RRW.INI. This setting identifies the R&R program directory.

For example, if you plan to have your user(s) place RRWRUN.EXE in D:\RRPROG,
you would include the following entry in the RRW.INI file that you distribute:

[Defaults]

ProgDir32=D:\RRPROG

As a result, the Viewer DLL will be able to find RRWRUN.EXE regardless of the
calling application’s directory location.

R&R ReportWorks Xbase Developing Applications Page 314

Chapter 7: Distributing Reports

Distribution Files for the OCX

In addition to the required files listed in Figure 7.1, you must include the following
files when distributing reports for Viewer access using the R&R OCX:

� Your program executable

� COMDLG32.DLL

� MSVCRT20.DLL

� MFCANS32.DLL

� OC30.DLL

� RRRPT32.DLL

� RRW32.OCX

� THREED32.OCX

Your user(s) should place the OCX and DLL files in the Windows System directory

so that these files can be shared by applications in any directory.

R&R ReportWorks Xbase Developing Applications Page 315

Chapter 7: Distributing Reports

Specifying the Location of RRWRUN.EXE

If the Viewer executable (RRWRUN.EXE) will not be in the same directory as your
Visual Basic executable, modify the ProgDir32 setting in the [Defaults] section of
RRW.INI. This setting identifies the R&R program directory.

For example, if you plan to have your user(s) place RRWRUN.EXE in D:\RRPROG,
you would include the following entry in the RRW.INI file that you distribute:

[Defaults]

ProgDir32=D:\RRPROG

As a result, the OCX will be able to find RRWRUN.EXE regardless of the calling
application’s directory location.

R&R ReportWorks Xbase Developing Applications Page 316

Chapter 7: Distributing Reports

Distributing VB Applications

You should use the Setup Wizard and Setup Toolkit that comes with Visual Basic to
create a setup program for distributing your VB application. Refer to the Visual
Basic documentation for information about building a setup program for your

application.

When presented with a list of files to be distributed with your application, make
sure that the DLLs and OCXs identified in the Distribution Files for the OCX
section are included on this list. Also ensure that the description of RRW32.OCX in

the [Files] section of the Wizard-generated SETUP.LST file includes the
$(DLLSelfRegister) key value; for example:

File1=1,,RRW32.OC_,RRW32.OCX,$(WinSysPath),
$(DLLSelfRegister),$(Shared),4/1/1996,120000,1.0.0.0

See the description of the [Files] section of SETUP.LST in your Visual Basic

documentation for more details.

If you are not going to be using the Setup Wizard and Setup Toolkit to distribute
your application, make sure that RRW32.OCX and the files needed by your

application are installed on the user’s system and registered in the user’s registry.

R&R ReportWorks Xbase Developing Applications Page 317

Chapter 7: Distributing Reports

Retrieving Report Files

Before R&R will display or print a report, it must locate all the files used in the
report, including tables, indexes, text memo files, or image files. If R&R cannot
locate these files it will return an error message when you try to display or print
the report. In the Viewer, this error will appear in your output status table. Viewer

follows the rules described in the following sections to save and locate files used in
a report. If you are developing reports that will not be retrieved from the same
drive/directory in which they were saved, you need to know these rules.

In the following rules, "master" drive/directory is the drive/directory where the
master table is currently located; "default" drive is the drive where the default
data directory is located; and "saved" drive/directory/file name is the drive,
directory, and name of any file as it was when the report was last saved.

R&R ReportWorks Xbase Developing Applications Page 318

Chapter 7: Distributing Reports

Related Tables and Indexes

When you save a report, R&R follows a set of rules to save the name of each
related table and index file used in the report. In the following rules, assume that
the master table is in C:\DIR1.

1. If the file’s drive and directory are the same as the master drive and
directory, R&R saves only the file name in the report definition. For
example, if the full path and name of an index file is C:\DIR1\FILE1.NDX,
R&R saves only FILE1.NDX.

2. When the report is retrieved, R&R tries to locate required files by searching
1) master drive:\master directory\saved file name and 2) default
drive:\default directory\saved file name. In each directory searched for an
index file, the saved index file name extension will be tried first, then the
default index extension specified in RRW.INI or on the R&R command line.

3. If the file’s drive is the same as the master drive, but the directories differ,
R&R saves both the file name and the directory. For example, if a report uses
an index in C:\DIR2 and the index file name is FILE2.NDX, R&R saves

4. \DIR2\FILE2.NDX.

5. When the report is retrieved, R&R tries to locate required files by searching
1) master drive:\saved directory\saved file name, 2) master drive:\master
directory\saved file name, and 3) default drive:\default directory\saved file
name. In each directory searched for an index file, the saved index file name

extension will be tried first, then the default index file name extension.

6. If the file’s drive differs from the master drive, R&R saves the entire path
and file name. For example, if the report uses an index file whose name is
D:\DIR3\FILE3.NDX, R&R saves D:\DIR3\FILE3.NDX.

7. When the report is retrieved, R&R tries to locate required files by searching
1) saved drive:\saved directory\saved file name, 2) master drive:\master
directory\saved file name, and 3) default drive:\default directory\saved file
name. In each directory searched for an index file, the saved index file name
extension will be tried first, then the default index file name extension.

If the related file index was defined as a FlexLink index, the defined index will
always be recreated in the \windows\temp directory. We do not attempt to find
the FlexLink that was previously created.

R&R ReportWorks Xbase Developing Applications Page 319

Chapter 7: Distributing Reports

Text Memo Files

When you save a report, R&R saves the complete path and name of any attached
text memo file. When you retrieve a report that uses a text memo file, R&R first
looks for the file in the drive/directory saved with the report, then in the master

drive/master directory, then in the default data directory.

Image Files

When you save a report, R&R records whether the image was saved in the same
directory as the report library. If it was, R&R will look for the image file in the
directory that contains the current report library. If the image was not saved in

the same directory as the report library, R&R will look in the directory that
contained the image when the report was saved. If Report Designer does not find
the image in the library directory or the saved directory, it will look in the default

image directory. If the Viewer does not find the image file in the library or saved
directory, it will search the default image directory specified in RRW.INI or
identified with the /I command switch.

R&R ReportWorks Xbase Developing Applications Page 320

Chapter 7: Distributing Reports

Consistency Checking

When a report is retrieved, R&R checks to see whether the saved report is
consistent with the current database and index files. While you are responsible for
keeping your indexes up to date, R&R will notify you of other discrepancies
between the report and the files it uses. For example, R&R checks to see whether

you have changed the field names in any of the tables since you last saved the
report.

The following database changes affect reports saved in R&R:

� Deleting a field;

� Deleting a linking field;

� Changing the name or data type of a field;

� Changing the width of a field;

� Changing the name of a file.

The following sections explain how R&R responds to these changes. In many

cases, R&R notifies you of the inconsistency between the report and the database.
In Report Designer these messages will appear on the display. In the Viewer they
will appear in your output status table and, if RI_DISPERR is set to true, on the
display.

You can then edit the retrieved report to accommodate the changes made to your
tables. (Note that you will not be notified of changes in field width.)

R&R ReportWorks Xbase Developing Applications Page 321

Chapter 7: Distributing Reports

Deleted Field

If you delete from a table any field that is used by a report, R&R notifies you that
the field is missing when it retrieves the report. It erases the field from the report,
as well as erasing any totals based on it. If the deleted field is used in a calculated

field expression, the calculated field will appear in the Field Menu flagged with a
question mark in front of it. If any flagged fields are used in your report, you will
have to edit the fields’ expressions before printing the report.

If you delete a field used in a query, you will be prompted to edit the query when
you try to print the report.

If you delete a sort or group field, R&R also deletes the sort or group fields below
it in the Sort-Group Table. For example, if you delete COMPANY from your table,
both COMPANY and PRODUCT will be deleted from the following list of four sort

fields:

1 STATE
2 CITY

3 COMPANY

4 PRODUCT

Your Sort-Group Table will then contain only the following fields:

1 STATE
2 CITY

If you have deleted fields used to group your report, you may need to edit your
total fields so that they reset at the appropriate level.

Deleted Linking Field

If you delete a database field that is used as a linking field, R&R creates a

"dummy" linking field so it can retrieve the report. The dummy field has the same
name as the missing linking field, with the prefix "?_" (as in ?_NAME). When you
open the report, R&R displays a message notifying you that the field is no longer
in the database, then displays the message "Relation must be edited." Use the

Database ⇒ Relations dialog to correct or remove each relation whose description

is flagged with a question mark (?). You cannot print or preview the report until
you have corrected or deleted all incomplete relations.

R&R ReportWorks Xbase Developing Applications Page 322

Chapter 7: Distributing Reports

Changed Field Name or Data Type

If you change the name or data type of a database field, R&R behaves as if the
original field had been deleted and a new field added: the original field is removed
from the composite record structure, along with any fields that total it, and the

new field is added to the composite record structure. Use Insert ⇒ Field to insert

the new field. Any calculated field that uses the changed field will appear in the
Field Menu flagged with a question mark. If any flagged fields are used in your
report, you must edit the fields’ expressions before printing the report.

Changed Field Width

If you change the width of a field used in the report, R&R does not automatically
adjust the width of the field on the report layout or in any calculated fields that

use the field. You must use Format ⇒ Properties to make any necessary

adjustment. If you use the field more than once in a report, you must adjust each
occurrence of the field individually.

Changed File Name

If the name of a file has been changed, R&R searches for the file using the search
rules previously described. If it can’t find the file under its old name, R&R then

displays the path and name of the file it can’t find. Press Enter; then select or
enter the path and file name of the renamed file.

Save the Revised Report

You should save a report after correcting for database or file location changes. If

you don’t, you will have to repeat the corrections the next time you retrieve the
report. If you’re not sure of the corrections, save the report under a different
name.

Appendix A Viewer Equivalencies

Introduction (Viewer Equivalencies)

R&R provides three ways of accessing the Viewer: the Viewer executable, the

Viewer DLL, and the R&R Custom Control. Figure A.1 shows the equivalencies
among the Custom Control properties, DLL routines, and Viewer executable control
parameters, as well as the default value for each.

Appendix A: Viewer Equivalencies

R&R ReportWorks Xbase Developing Applications Page 324

Table of Viewer Equivalencies

Viewer

Custom
Control Property

DLL Equivalent
EXE
Equivalent

Default
Value

(About)

Action execRuntime (Not (Not

 applicable) applicable)

CopiesToPrinter setCopies RI_COPIES Saved

 number

DataDirectory setDataDir /D Value in

 RRW.INI

Destination setOutputDest RI_PRINTER Saved

 destination

DisplayError setDisplayErrors RI_DISPERR False

DisplayStatus setDisplayStatus RI_STATUS False

EndPage setEndPage RI_ENDPAG Saved ending

 E page

ExportDestination setExportDest RI_EXPDST Display

Filter setFilter RI_FILTER (Not

 applicable)

GroupFieldsString setGroupField RI_GROUP1, Saved group

 ... fields

HighScope setHighScope RI_HISCOPE End of file

ImageDirectory setImageDir /I Value in

 RRW.INI

IndexExtension setIndexExtension /X Value in

 RRW.INI

LastErrorCode returned from
execRuntime

RO_ECODE (Not
applicable)

LastErrorPage returned from
execRuntime

RO_PAGES (Not
applicable)

LastErrorString returned from
execRuntime

RO_EMSG (Not
applicable)

LowScope setLowScope RI_LOSCOP Beginning of

 E file

MasterIndex setMasterIndexInfo RI_MINDEX Saved value

MasterTable setMasterTableName RI_MASTER Saved value

MemoFileName setMemoName RI_MEMO Saved value

NoEscape setPreventEscape RI_NOESC False

ParametersString setUserParam User-
defined
parameters

Blank

Appendix A: Viewer Equivalencies

R&R ReportWorks Xbase Developing Applications Page 325

Custom
Control Property

DLL Equivalent

Viewer

EXE
Equivalent

Default

Value

Port setPrinterPort RI_WPORT Saved printer

 port

Printer setPrinter RI_WPTR Saved printer

 driver

PrintFileName setOutputFile RI_OUTFILE Saved value

Query setFilterUsage RI_QUERY Use saved

 query

RelatedTablesString setRelationInfo RI_ALIAS1, Saved related

 ... tables

ReportDirectory setLibraryDir /R Value in

 RRW.INI

ReportLibrary setLibrary RI_LIBRARY Required

ReportName chooseReport RI_REPORT Required

ReportPick setReportPick RI_REPPICK Blank

Scope setScopeUsage RI_SCOPE Saved scope

 values

SortFieldsString setSortField RI_SORT1, Saved sort

 ... fields

StartPage setBeginPage RI_BEGPAG Saved starting

 E page

(Not applicable) setStatusEveryPage RI_CHKTIM R

 E

StatusFileName setStatusFileName /O RRUNOUT.DBF
or
RRUNOUT.OUT

SuppressTitle setSuppressTitle /H False

TestPattern setTestPattern RI_TEST False

WindowBorderStyle setWinBorderStyle RI_WBORDE Sizable

 R

WindowControlBox setWinControlBox RI_WCTRL True

WindowHeight setWinHeight RI_WHEIGH Maximized

 T

WindowLeft setWinLeft RI_WLEFT Maximized

WindowMaxButton setWinMaxButton RI_WMAX True

WindowMinButton setWinMinButton RI_WMIN True

WindowTitle setWinTitle RI_WTITLE Report name

WindowTop setWinTop RI_WTOP Maximized

WindowWidth setWinWidth RI_WWIDTH Maximized

WriteAllow setWriteAllow /W True

Appendix A: Viewer Equivalencies

R&R ReportWorks Xbase Developing Applications Page 326

Custom
Control Property DLL Equivalent

Viewer

EXE
Equivalent

Default

Value

Xbase Editor setXbaseEditor /E True

