
For Windows, SQL Edition

COPYRIGHT

 2000 Liveware Publishing Inc.

All rights reserved.

Liveware Publishing Inc.
2-355 Clock Tower Place

Maynard, MA 01754

This manual is copyrighted and all rights are reserved. This
document may not, in whole or part, be copied, photocopied,

reproduced, translated, or reduced to any electronic medium or
machine readable form without the prior written consent of

Liveware Publishing Inc.

Printed in the United States of America

Trademarks and Acknowledgments

R&R Report Designer is a registered trademark of
Liveware Publishing Inc.

Portions of the imaging technology of this product are copyrighted by
Accusoft Corporation.

All Avery product code numbers are trademarks of the
Avery Dennison Corporation.

All other product names and logos in this manual are used for
identification purposes only and may be trademarks or registered

trademarks of their respective companies.

Documentation Part Number: RSW8_1DA(0000-01)

Developing Applications, SQL Edition i

Table of Contents
Chapter 1 Overview ..1

Introduction ..1
Organization of the Manual ...1
Viewer Requirements...2

Chapter 2 Using the Report Viewer3
Introduction ..3
Executing the Viewer...3

Providing Viewer Input..4
The Viewer Command Line ...4
Command Switches ..6
Using RSW.INI for Default Information..........................11

Using Control Tables and Files ..12
Creating a Control Table ...12
Creating a Text Control File ..12
Specifying Control Parameters13
Parameters for Modifying Report Characteristics...........14
Parameters to Control Viewer Preview Display...............31

Understanding the Viewer Status File................................33
Status File Entries..34

Application Calls to the Report Viewer36
Calling the Viewer from C ...36
Calling the Viewer from Visual Basic.............................37
Calling the Viewer from PowerBuilder38

Chapter 3 Parameter Passing..39
Introduction ..39
Passing Control Parameter Values39

Defining Parameters ...40
Prompting for User Input ..40
Using a Parameter Table ...42

Chapter 4 Accessing the Viewer DLL45
Introduction ..45

Action Routines ..46
Get-Parameter Routines..46
Set-Parameter Routines ..48
User-Interface Routines ..50

Table of Contents

ii Developing Applications, SQL Edition

Error-Handling Routines...51
Functions Provided by the Viewer DLL...............................51

chooseDataSource...51
choosePrinter..52
chooseReport ..53
chooseTable ..55
endReport ...56
execRuntime ...57
getBeginPage...58
getCopies...59
getDataSource...60
getDisplayErrors ...60
getDisplayStatus ...61
getEndPage ...61
getErrorInfo ..62
getExportDest ...64
getFilter ..64
getFilterUsage ...65
getFirstFieldName ..65
getFirstFilteredFieldName..66
getFirstGroupField..67
getFirstJoinInfo ..68
getFirstReplace ...69
getFirstSortField...70
getFirstUserParam ..70
getLibrary..71
getMasterTableName ..72
getMemoName ..72
getNewReportHandle ..73
getNextFieldName...73
getNextFilteredFieldName ..74
getNextGroupField ..75
getNextJoinInfo ..75
getNextReplace ...76
getNextSortField ...77
getNextUserParam ..78
getOutputDest...78
getOutputFile..79
getPreventEscape ...79
getPrinter ..80
getPrinterPort ...81
getReportPick ...81

 Table of Contents

Developing Applications, SQL Edition iii

getRuntimeRecord..82
getStatusEveryPage ..83
getTestPattern ..84
getWinTitle..84
resetErrorInfo ...85
setBeginPage ...85
setCopies...86
setDatabase ...86
setDataDir ...87
setDataSource ...87
setDisplayErrors ...88
setDisplayStatus ...88
setEndPage..89
setExportDest ...90
setFilter...90
setFilterUsage ...91
setGroupField..92
setImageDir...93
setJoinInfo ..94
setLibrary ..94
setLibraryDir ...95
setMasterTableName...96
setMemoName...96
setOutputDest...97
setOutputFile ..99
setPassword...100
setPreventEscape..100
setPrinter ..101
setPrinterPort ...102
setReplace...103
setReportPick ...104
setSortField...105
setStatusEveryPage ..106
setStatusFileName ..106
setSuppressTitle ...107
setTestPattern ..107
setUserName ...108
setUserParam ..109
setWhere ...111
setWinBorderStyle ..112
setWinControlBox ...113
setWinHeight ..113

Table of Contents

iv Developing Applications, SQL Edition

setWinLeft ...114
setWinMaxButton ...114
setWinMinButton ..115
setWinTitle..115
setWinTop ...116
setWinWidth..117
writeRuntimeRecord...117

Chapter 5 Using the Custom Control (OCX) 119
Introduction ..119
Installation..119
Determining Report Status ..120
Using RSW.INI for Default Information121
Using the OCX ..121

Changing Values Using the Properties List..................122
Changing Values Using the Control Properties Dialog .123

Custom Control Properties ..129
(About) ...129
Action...129
CopiesToPrinter ..130
Database ..131
DataDirectory ...131
DataSource...132
Destination...133
DisplayError...135
DisplayStatus ...136
EndPage ...136
ExportDestination ..137
Filter ..138
GroupFields..140
GroupFieldsString ..141
ImageDirectory ...142
Include ...142
LastErrorCode ..144
LastErrorPage...145
LastErrorString ..145
LoadProperties..146
MasterTable..147
MemoFileName ...148
NoEscape ...149
Parameters ...150

 Table of Contents

Developing Applications, SQL Edition v

ParametersString..150
Password..151
Port ..152
Printer ..153
PrintFileName...154
RelatedTables ...155
RelatedTablesString..155
Replace...156
ReportDirectory ..159
ReportLibrary ...160
ReportName..161
ReportPick..162
ResetControl...163
ResetProperties...164
RunReport..164
SortFields ...165
SortFieldsString..166
StartPage..167
StatusFileName ..167
SuppressTitle ...168
TestPattern...169
UpdateControl ..169
UserName...170
Where...170
WindowBorderStyle ..172
WindowControlBox ...173
WindowHeight ..173
WindowLeft...174
WindowMaxButton ...174
WindowMinButton..175
WindowTitle..176
WindowTop...176
WindowWidth ...177

Chapter 6 R&R ReportScript .. 179
Introduction ..179
Custom Report Wizards...180

Configuring the Custom Application180
Invoking the Custom Application181

Script File Format ...181
Script File Sections and Keywords183
Sample Script Output...191

Table of Contents

vi Developing Applications, SQL Edition

Script Command-Line Argument (/S)...............................192
Report Wizard Input File ...193

Chapter 7 Interfacing to Application DLLs 195
Introduction ..195
Syntax...195
Example..195

Chapter 8 Distributing Reports 197
Introduction ..197
Required Files for Report Distribution197
Distributing VB Applications ...198
Retrieving Report Files...199

Client/Server Database Platforms...............................199
Desktop Database Platforms199
Consistency Checking...204

Appendix A Viewer Equivalencies 207
Introduction ..207
Table of Equivalencies ...207

Developing Applications, SQL Edition 1

Chapter 1
Overview
Introduction

This manual explains how to incorporate reports into your Windows
applications, whether you are using the Report Viewer or distributing
reports for use with Report Designer. Using the Viewer, you can call
reports from within an application program just as you might call any
other program module.
For example, you might develop an Order Entry application that calls
the Viewer to produce order forms, mailing labels, and invoices
designed with Report Designer. Users can then access these forms and
reports from Windows or from a Windows application without using
Report Designer.

Organization of the Manual
Chapters 2, 4, and 5 of this manual explain three methods for
accessing the Report Viewer:

 You can directly access the Viewer executable
(RSWRUN.EXE) using a control table or file. This method is
explained in Chapter 2, “Using the Report Viewer.”

 The Viewer DLL provides an Application Programming
Interface (API) that is suitable for use by any high-level
programming language. See Chapter 4, “Accessing the Viewer
DLL,” for details.

 The Viewer OCX (custom control) simplifies Report Viewer
access for applications. Chapter 5, “Using the Custom
Control,” explains this method.

Chapter 1

2 Developing Applications, SQL Edition

The remaining chapters in this manual provide information for
application developers who are creating reports for use in the Windows
environment, whether the reports will be run via the Viewer or
interactively:

 Chapter 6, “Using ReportScript,” explains how developers can
pass a user-specified report specification to Report Designer by
means of a script file.

 Chapter 7, “Interfacing to Application DLLs,” explains use of
R&R’s CDLL()function to call a Windows Dynamic-Link
Library (DLL) function from a report.

 Chapter 8, “Distributing Reports,” provides information useful
to application developers who are creating reports for
distribution to other users.

 Appendix A, “Runtime Equivalencies,” shows the
equivalencies among the Custom Control properties, DLL
routines, and Viewer executable control parameters, as well as
the default value for each where applicable.

Viewer Requirements
To run the Viewer, you need the following:

 The Viewer program (RSWRUN.EXE), which is installed in
the R&R program directory if you choose to install the optional
Viewer files during Setup.

 All Viewer distribution files required for your particular
application. See Chapter 8, “Distributing Reports,” for a
complete list of required and optional files.

 A minimum of 500 KB of available memory for execution.

Developing Applications, SQL Edition 3

Chapter 2
Using the Report Viewer
Introduction

This chapter explains how to use the R&R Report Viewer
(RSWRUN.EXE) to run reports from Windows or from within
Windows application programs. The explanation of the Report Viewer
is presented in the following sections:

 Executing the Viewer
 Using Control Tables and Files
 Understanding the Viewer Status File
 Application Calls to the Report Viewer

Executing the Viewer
To use the Report Viewer to run a report, follow these general steps:
1. In Report Designer, create and save each report you want to run.
2. Using your database software or a text editor, create a Viewer

control table or file that identifies the report, as well as any
parameters you want to change at report execution. The structure
and contents of control tables and files are described in the Using
Control Tables and Files section of this chapter.

3. Execute the Viewer in one of the following ways:
♦ Click the Windows Start button and select Run; then enter the

Viewer command line and select OK.
♦ Create a shortcut on the Windows desktop: right-click on an

empty area of the desktop, highlight New, and select Shortcut.
Enter the Viewer command line and select Next; enter a
shortcut name and select Finish.

♦ Use the Report Shortcut Maker utility to create program icons
for your reports so that you can access them simply by double-
clicking an icon.

Chapter 2

4 Developing Applications, SQL Edition

♦ Include a call to the Viewer in your Windows application.

Providing Viewer Input
When you run a report with the Viewer, you use either a database table
(referred to as a control table) or a text file (referred to as a control
file) to specify each report you want to run and any parameters you
want to modify at report execution. For example, you can use the
control table or file to override the SELECT statement for the report, the
filter saved with the report, or the report’s output destination.
You create a control table using your database software. You can
create a text control file with any programming language, text editor,
or word processor that produces unformatted text files. For details on
creating control tables and files, see the Using Control Tables and
Files section of this chapter.

The Viewer Command Line
To execute the Viewer, use the command RSWRUN along with the
/TS or /TT switch, which identifies your control table or file. For
example, to run the reports specified in the text control file
REPORTS.TXT, you would use this command:

 RSWRUN /TTreports.txt

The Viewer command line can also include other command switches
listed in Figure 2.1 and described in the Command Switches section
of this chapter. See the description of each command switch for
details.

Command Line Using a Control Table
If you are using a database table to provide Viewer control parameters,
you can generate all the reports specified in the control table by issuing
the Viewer command with the /TS switch, which identifies the control
table, and the /CS switch, which identifies the control table data
source. For systems that require a user name and password for access
to tables, as necessary you also need to use the /CU, /CP, /U, and /P
switches, which provide passwords for the control table or report
tables. The Viewer command can also include one or more of the
optional command switches listed in Figure 2.1. The syntax is:

RSWRUN /TS<table name> /CS<data source name> [switches]

 Using the Viewer Executable

Developing Applications, SQL Edition 5

Since the /CS switch identifies the control table data source, you can
create a control table or file using any data source, regardless of which
data source your Viewer reports will be accessing. For example, you
can use a control table created in dBASE to run reports that use data
from an Oracle database.
If you do not want to run all the reports specified in the control table,
you can generate specific reports using one or more Row ID numbers
with the Viewer command. The syntax is:

RSWRUN /TS<table name> [Row ID]...[switches]

Replace <Row ID> with the number assigned to the report you want to
run. This Row ID number must match a value in the RI_ID column in
your control table. (See the description of the RI_ID parameter.) You
can specify multiple Row ID numbers on the command line or assign
the same RI_ID value to multiple reports in the control table. To
generate all the reports specified in the control table, omit the Row ID
argument.
For example, to run all the reports specified in the SQL Server
REPORTS table in the PAYROLL database on the ACCTS server
whose RI_ID value is 3, issue this Viewer command:

RSWRUN /TSreports 3 /CSaccts /CDpayroll /CUjoe /CPsystem

To run all the reports specified in the REPORTS table in the
PAYROLL database on the ACCTS server whose RI_ID value is 1 or
3, issue this Viewer command:

RSWRUN /TSreports 1 3 /CSaccts /CDpayroll /CUjoe /CPsystem

Command Line Using a Text Control File
If you are using a text file to provide Viewer control parameters, you
generate a single report by issuing the Viewer command with the /TT
switch followed by the file name and any optional command switches:

RSWRUN /TT<file name> [switches]

The /TT switch is required with the file name, but all other switches
are optional. You can include a path with the file name.
For example, the following command will run the report specified by
the RUNIN.TXT file in the \DATA directory on the C: drive:

RSWRUN /TTc:\data\runin.txt

Chapter 2

6 Developing Applications, SQL Edition

To run multiple reports with a single Viewer command, create a
command file, an unformatted text file that lists the relevant text
control files. First create a separate control file for each report you
want to run; then create a command file listing the control files. To
execute the Viewer with a command file, precede the command file
name with the @ symbol on the Viewer command line.
For example, if you created three control files, you can create a
command file named REPORTS.CMD that lists these three control
files (each on a separate line), then call the Viewer using the following
command:

 RSWRUN @REPORTS.CMD

As a result, the Viewer will run the reports specified in the control files
listed in REPORTS.CMD.
The command file name can be followed by any command switches
you want to specify. For example, to specify the user name “john” and
password “accounts,” you would use this Viewer command:

 RSWRUN @REPORTS.CMD /Ujohn /Paccounts

Command Switches
Figure 2.1 lists the Viewer command switches. The command switches
identify the control table or file and provide log-on information that
will give the user access to the database tables used in the reports.
Command switches can appear in any order on the command line and
can be either upper or lower case. Each command switch must be
attached to the item it specifies; spaces between the switch and the
specification are not allowed. For example, to specify the control table
password “admin” with the /CP switch, /CPadmin is correct and
/CP admin is incorrect.

 Using the Viewer Executable

Developing Applications, SQL Edition 7

Switch Description
/TS, /TT Control table (TS) or text file (TT) name. Required

unless you are running multiple reports with a text
command file.

/CS Data source for control table.
/CU, /CP Control table user name (CU) and password (CP).
/CD Database for control table.
/U, /P User name and password for report tables.
/R Default report directory.
/D Default data directory.
/I Default image file directory.
/O Directory and/or name for output status file.
/H Suppresses printing of Title and Summary lines

when no records are found.
/B Suppresses display of product “splash screen” at

startup.
/AL Name of DLL to be pre-loaded.

Figure 2.1 Command Switches

These switches are explained in detail in the following sections.

Control Table or File Name (/TS, /TT)
You must use the /TS or /TT switch with the Viewer command to
specify the control table or file you are using. For example, to run all
reports in a REPORTS control table (whose data source is “Sample
Reports”), you would use this Viewer command:

 RSWRUN /TSreports /CS"Sample Reports"

To run the report identified in the text control file REPORTS.TXT,
you would use this command:

 RSWRUN /TTreports

Chapter 2

8 Developing Applications, SQL Edition

For control tables and files that are stored as DOS files, you can
include a path with the file name. For example, the following
command will run the report specified by the RUNIN.TXT file in the
\DATA directory on the C: drive:

 RSWRUN /TTc:\data\runin.txt

Control Table Data Source (/CS)
If you are using a control table, you must use the /CS switch to identify
the data source for that table. For example, to run all reports in an
Oracle REPORTS control table whose data source is PERSONNEL,
you would use a command like this:

 RSWRUN /TSreports /CSpersonnel

Control Table Database (/CD)
If the database platform for your control table supports multiple
databases, you can use the /CD switch to specify or override the
control table database. For example, to run all reports in a SQL Server
REPORTS table in a database BENEFITS with a data source of
PERSONNEL, you would use a command like this:

 RSWRUN /TSreports /CSpersonnel /CDbenefits

Control Table User Name (/CU) and Password (/CP)
If your control table requires a different user name and password from
your report tables, or if you do not use the /P and /U switches, you
must use the /CU and /CP switches to supply the control table user
name and password (if required for access to the control table). For
example, if the user name “jane” and password “system” are required
to access the Oracle control table INVOICE, you would use a
command like the following:

 RSWRUN /TSinvoice /CSsales /CUjane /CPsystem

If your database requires a user name but no password for access to the
control table, you must still use the /CP switch if you want to bypass
the log-on dialog; for example:

 RSWRUN /TSinvoice /CSsales /CUmary /CP

 Using the Viewer Executable

Developing Applications, SQL Edition 9

User Name and Password for Report Tables (/U, /P)
If your database requires a user name and password for access, you can
include the user name and password in the Viewer command. For
example, if the user name “john” and password “accounts” are
required to access the database used in the report specified in an Oracle
INVOICE control table, you would use a command like the following:

 RSWRUN /TSinvoice /CSsales /Ujohn /Paccounts

If you do not supply user name and password using /U and /P, the
Viewer will try to access the database using information saved in the
report and in the RSW.INI file, if one is present. For security reasons,
passwords are not saved with reports or stored in RSW.INI. If the
required access information is not available, the Viewer will prompt
the user for log-on information. If your database requires a user name
but no password for access, you must still include the /P switch if you
want to bypass the log-on dialog; for example:

 RSWRUN /TSinvoice /CSsales /Umary /P

Note that these switches are used to establish a connection to the
database, as distinct from providing access to individually password-
protected tables (as with Paradox, for example). For information about
supplying passwords for access to individually password-protected
tables, see the section in this chapter on the RI_DSOURCE parameter.

Default Report Directory (/R)
To specify a default directory where the Viewer may look for the
report specified in the control file, use the /R switch in the command
you use to call the Viewer. For example, the following command
specifies C:\LIB as the default report directory:

 RSWRUN /TTreports.txt /Rc:\lib

This command will run the report(s) specified in the REPORTS.TXT
control file. The Viewer will look for the report(s) in C:\LIB. The
default report directory you specify with this switch will override any
default report directory specified in the RSW.INI file.

Default Data Directory (/D)
The Viewer looks for dBASE and Btrieve tables, indexes, and text
memo files in the directories saved with the report. To specify a default
directory where the Viewer will look for these data files when they are

Chapter 2

10 Developing Applications, SQL Edition

not in the saved directory, use the /D switch. For example, the
following command specifies C:\DATA as the default data directory:

 RSWRUN /TTreports /DC:\DATA

The default data directory you specify with the /D switch will override
any default data directory specified in the RSW.INI file.

Default Image File Directory (/I)
To specify a default directory where the Viewer may look for image
files used in a report, use the /I switch with the Viewer command. The
directory you specify with this switch will override any default image
directory specified in the RSW.INI file.

Status File Name (/O)
You can distinguish Viewer status files by using the /O switch to
specify the directory in which the file will be created and/or to specify
the complete status file name.
For example, the following command selects MYSTATUS as the
name for the status file generated by this Viewer command. Because
no path is specified, the file will be created in the current directory.

 RSWRUN /TTreports.in /Omystatus

To specify the directory in which a status file should be created, enter a
full path and name. If you enter a path without a file name, the Viewer
will create a file named RSWRUN.OUT in the specified directory. If
you do not use the /O switch, the Viewer creates a status file named
RSWRUN.OUT in the current directory.

Title/Summary Lines for No Records Found (/H)
By default, the Viewer will print Title and Summary lines even when
no records are found. To cause the Viewer to print nothing (no Title or
Summary lines) when no records are found, execute the Viewer with
the /H switch.

Suppress Splash Screen (/B)
By default, at startup the Viewer displays a “splash screen” containing
product name and other information. To suppress display of this screen
at startup, execute the Viewer with the /B switch.

 Using the Viewer Executable

Developing Applications, SQL Edition 11

Pre-Load DLL (/AL)
To specify the name of a DLL to be loaded at startup, use the /AL
switch followed by the name (optionally including the path) of the
DLL to be loaded..

Using RSW.INI for Default Information
Report Designer stores log-on information in the file RSW.INI, which
is created in the Windows directory at installation. When you start
Report Designer, the log-on information (except the password) is
saved in RSW.INI. The default log-on information for each database
platform is replaced whenever you connect to that platform. The
Viewer will look for an RSW.INI file in the Windows directory and
attempt to use the defaults if the Viewer command does not supply the
log-on information. Any information you supply using Viewer
command switches will always override the corresponding RSW.INI
setting.
If you distribute reports to other users, you can customize RSW.INI for
each user and distribute it with the other Viewer files. However, the
command switches and control table parameters provide a more
reliable way to supply accurate and up-to-date log-on information.
Figure 2.2 lists the RSW.INI settings that the Viewer will use (unless a
command-line switch is used instead).

RSW.INI Setting Specifies
[Defaults] Section
DataDir Default data directory
ImgDir Default image file directory
ImgExt Default image file extension
LibDir Default library file directory
MemExt Default memo file extension
IndExt Default index file extension
[Preferences] Section
PrevWinClr Preview window color
ShowSplash Suppresses display of product

“splash screen” at startup

Figure 2.2 RSW.INI Settings Used by Viewer

Chapter 2

12 Developing Applications, SQL Edition

Using Control Tables and Files
The following sections describe the structure and contents of database
control tables and text control files.

 Creating a Control Table
 Creating a Text Control File
 Specifying Control Parameters

Creating a Control Table
To prepare a control table, use your database software to create a table
that contains columns for the control parameters, then add a row for
each report you want to run and enter values in the appropriate
columns. In the simplest case, the table can include just the report
name (as the RI_REPORT value); as a result, the Viewer would output
the report to the destination saved with the report.
Follow these guidelines in creating a control table:

 Specify each parameter in a separate column; the column name
must be the same as the parameter name.

 Predefined parameters must use the column names and data
types specified in Figures 2.3 and 2.10. For character columns,
use any supported character data type. For numeric fields, use
any numeric data type, but note that the numeric parameters
accommodate only integer values.

 User-defined parameters can use any column name and
supported character data type.

 Parameters can be in any order.
 The only required parameter is RI_REPORT (and, if running

reports from a library, RI_LIBRARY) or, alternatively,
RI_REPPICK

 You can omit unused (blank) parameters.
 Specify parameters for each report in a separate row.

Creating a Text Control File
You can also create a control file using any text editor or word
processing program that saves unformatted text files. In the file, you
specify the report name and any optional parameter values. When you
use a text file to control the Viewer, you must create a separate file for

 Using the Viewer Executable

Developing Applications, SQL Edition 13

each report you want to run. However, you can run multiple reports
with a single Viewer command by creating a command file that lists
each control file.
The format for each parameter name and value in a control file is:

<parameter name>=<value>

Follow these guidelines in creating a control file:
 Specify each parameter and its value on a separate line.
 Each parameter and its value must fit on a single line.
 The maximum length of a line is 1000 characters.
 You can list parameters in any order.
 Parameter names are case insensitive (that is, you can enter

them in upper, lower, or mixed case).
 Predefined parameters must use the names listed in Figures 2.3

and 2.10; user-defined parameters can have any name.
 The only required parameters is RI_REPORT (and, if running

reports from a library, RI_LIBRARY) or, alternatively,
RI_REPPICK.

 Leading and trailing white space in both the parameter name
and the value is ignored.

 Lines beginning with a left square bracket ([) are ignored.
 Lines beginning with a semicolon are ignored.

Specifying Control Parameters
The control table or file contains predefined parameters specifying
values that control frequently changed report features such as filters.
The control table must contain a column for RI_REPORT (or
RI_REPPICK). It can contain values for some or all of the other
predefined parameters listed in Figures 2.3 and 2.10.
The Viewer cannot run the report unless the control table contains a
valid entry for report name (and report library, if applicable). If the
table does not contain values for any predefined or user-defined
parameters designed to change report characteristics, the Viewer will
run the report as saved.

Chapter 2

14 Developing Applications, SQL Edition

Width of Predefined Parameters
Predefined parameters have maximum widths specified in Figures 2.3
and 2.10. While you should not exceed these widths, you can decrease
the widths of these parameters to correspond to the actual width of
your data. User-defined parameters can be up to 512 characters wide.

Parameter Values
Parameters that require character values can contain upper, lower, or
mixed case letters, unless the parameters contain values used in a filter.
By default R&R is case insensitive, but if you edited RSW.SRT to
make R&R case sensitive, you should enter filter values in the case
used in the database.
Some predefined parameters can have a question mark (?) value in the
control table or file. Use the question mark to specify that the Viewer
should display a dialog box prompting the user to enter or select a
value. For example, when RI_PRINTER contains a question mark, the
Viewer will display a dialog box prompting the user to choose screen,
printer, or export as the report’s output destination.
The question mark parameter value is explained in more detail in the
descriptions of the parameters for which it is valid: RI_PRINTER,
RI_REPPICK, RI_WPTR, RI_WPORT, and RI_INCLUDE.

Parameters for Modifying Report Characteristics
Figure 2.3 lists the predefined parameters in the Viewer control table
or file that can be used to control report characteristics. The next
section of this chapter lists and explains the parameters that apply
specifically to the size and appearance of the preview window at report
execution.
Each parameter name has the prefix RI_. In the Data Type column, C
represents the character data type, N represents numeric, and L
represents logical.

 Using the Viewer Executable

Developing Applications, SQL Edition 15

Field
Name

Contents

Data
Type

Max.
Width

RI_ALIAS1 –
 RI_ALIAS99

In each, a related table name C 150

RI_BEGPAGE Beginning page number N 9
RI_CHKTIME Checkpoint frequency flag C 1
RI_COPIES Number of copies N 9
RI_DB Database for report tables C 50
RI_DISPERR Display error flag C or L 1
RI_DSOURCE ODBC data source C 32
RI_ENDPAGE Ending page number N 9
RI_EXPDST Destination (display, file, or

printer) for Excel exports
C 8

RI_FILTER Filter expression C 1024
RI_GROUP1 –
 RI_GROUP8

Group field override C 50

RI_ID Row identifier (control tables
only)

N 4

RI_INCLUDE Filter flag C 1
RI_LIBRARY Report library name C 128
RI_MASTER Master table name C 128
RI_MEMO Text memo file name C 128
RI_NOESC User escape flag C or L 1
RI_OUTFILE Output file name C 128
RI_PRINTER Destination C 32
RI_REPLACE SQL SELECT, EXEC, or DEFINE

REPORTVIEW overrides
C 1024

RI_REPORT Report name C 30
RI_REPPICK ? or R to prompt for report C 1
RI_SORT1 –
 RI_SORT8

Sort field override C 51

RI_STATUS Display status flag C or L 1
RI_TEST Test pattern flag C or L 1
RI_WHERE SQL WHERE clause C 1024
RI_WPORT Printer port C 40
RI_WPTR Printer name C 40
RI_WTITLE Window title C 200

Figure 2.3 Predefined Viewer Control Parameters

Chapter 2

16 Developing Applications, SQL Edition

The following sections, arranged in alphabetical order by parameter
name, explain the values required by each parameter.
Parameters that require character values can contain upper, lower, or
mixed case letters. Note that some database platforms can be
configured for case sensitivity; if your database platform is case
sensitive, make sure to enter database, table, and column names in the
proper case.

RI_ALIAS1 – RI_ALIAS99
These parameters are optional. You can use each of the parameters to
specify a related table to override those saved with the report. The
syntax is:

 <alias> = <table name>

In this specification, <alias> represents the R&R alias assigned to the
table in the saved report and <table name> represents the replacement
table.
For example, the following specification replaces the related table
assigned the CUST95 alias in the saved report with a table named
CUST96:

 CUST95 = CUST96

If you do not specify any related table overrides, the Viewer uses the
tables saved with the report. It searches for these tables using the
search rules explained in Chapter 7, “Distributing Reports.”

RI_BEGPAGE, RI_ENDPAGE
These parameters are optional. The beginning and ending page number
parameters allow you to override the starting and ending page numbers
saved with the report. The default value for these parameters is blank.
To specify page numbers, include an RI_BEGPAGE value, an
RI_ENDPAGE value, or both. If you specify both, RI_ENDPAGE
must be equal to or greater than RI_BEGPAGE. For example, users
can restart a canceled report where it was interrupted by specifying the
starting page number as the RI_BEGPAGE. (See the description of the
RO_PAGES field in the Understanding the Viewer Status File
section.) To reprint one or more consecutive pages of a report, specify
the page numbers in the RI_BEGPAGE and RI_ENDPAGE

 Using the Viewer Executable

Developing Applications, SQL Edition 17

parameters. To print just one page, specify the same page number for
both parameters.

RI_CHKTIME
This parameter is optional. The checkpoint frequency flag determines
how often the Viewer status file, by default RSWRUN.OUT, is
updated. The checkpoint flag can contain the letter R or P. R tells the
Viewer to update the status file after completing each report; P tells the
Viewer to update the file after completing each page. The default value
is R.
Specify P as the checkpoint value if you want Viewer users to be able
to determine how much of a report was printed before an abnormal
termination (for example, a system failure). When this value is P, the
Viewer will update the RO_PAGES page number value in the status
file after each page of the report is processed. (See the section in this
chapter entitled Understanding the Viewer Status File.) In case of a
report termination, the report can be restarted where it left off.
If your application doesn’t require the ability to restart terminated
reports, specify R and the report will print a bit faster. Users can
always reprint a report starting at the beginning.

RI_COPIES
This parameter is optional. It contains the number of copies of the
report you want to print. The number must be between 0 and 999,
inclusive. If you leave this parameter blank or enter 0, the Viewer
prints the number of copies saved with the report.

RI_DB
This parameter is intended for use with SQL Server data sources only.
Use it to override the database for the master table and any related
table whose database matches that of the master. Note that this
parameter will not override any qualified table name specified in a
User-SQL report.
RI_DB is ignored if a value is supplied for RI_MASTER.

Chapter 2

18 Developing Applications, SQL Edition

RI_DISPERR
This parameter is optional. It controls whether errors encountered by
the Viewer are displayed on the screen. If the parameter is true (T),
Viewer error messages are displayed in addition to being written to the
Viewer status file, by default RSWRUN.OUT. In this case, the Viewer
stops processing a report when it encounters an error and displays an
error message dialog. The user must then select OK to acknowledge
the error and resume processing.
If the parameter is false (F) or blank, Viewer error messages are not
displayed, but are written to the Viewer status file. If the Viewer
cannot open the status file, an error message is displayed regardless of
the RI_DISPERR value.

RI_DSOURCE
Use this parameter to specify (or override) the ODBC data source for
the report tables. You can include an optional connect string addendum
that will be appended to the string used to connect to a data source.
Syntax is as follows (separator is three vertical bars):
 <data source name> ||| <connect string addendum>

RI_DSOURCE can also be used to supply one or more passwords for
access to individual tables if the database driver supports passwords in
the connect string (as the Paradox driver does, for example). See the
on-line help for the driver for information about connect string options.

RI_EXPDST
Use this parameter to specify the destination (display, file, or printer)
for a report that has been saved with an Export Type setting of Excel
PivotTable or Excel Chart (you must also specify the appropriate value
in RI_PRINTER). A value of D will cause Excel to display the
PivotTable or Chart; F will cause Excel to send it to the file specified
by RI_OUTFILE; and P will cause Excel to print it to its default
printer.

RI_FILTER
The optional RI_FILTER parameter specifies a logical expression that
will override the filter saved with a report, if any, when the value in
RI_INCLUDE is O for Override.

 Using the Viewer Executable

Developing Applications, SQL Edition 19

The syntax of the RI_FILTER expression is identical to that of a
calculated field expression that returns a logical value. The
RI_FILTER expression can be up to 1024 characters long. When an
expression is specified, the Viewer selects all records where the value
of the RI_FILTER expression is true. The expression can refer to any
data available in the report, as well as many calculated and total fields.
For example, if you enter the filter expression CITY="Dallas", the
Viewer will select all records where the value of this expression is
true, in other words all records where the value in the CITY field is
Dallas. If the city name were in a character field named NOTE, the
filter expression LIKE("*Dallas*",NOTE) would select all records in
which the NOTE field contained the word "Dallas".
Entering the expression PASTDUE=T tells the Viewer to select all
records where the value in the PASTDUE field is true. Entering
AMOUNT>=200 will select all records where the value in the
AMOUNT field is greater than or equal to 200.
Entering the following expression will select all records where the date
in the INVDATE field of the RRORDERS table is January 31, 1996:

RRORDERS·INVDATE={01/31/96}

Compound filter expressions can be entered by using parentheses. For
example, the following filter expression selects all records where the
value in the CITY field is either Dallas or Houston and where the
value in the SALES field is greater than 50,000:

(CITY="Dallas" or CITY="Houston") and SALES>50000

Note that the value of RI_INCLUDE must be O in order for the
RI_FILTER override to take effect. If you omit RI_INCLUDE, the
RI_FILTER value will be ignored and the report will be run using the
saved filter (if any).

RI_GROUP1 – RI_GROUP8
The optional RI_GROUP parameters (RI_GROUP1 through
RI_GROUP8) enable you to specify different group fields from those
saved with the report. Figure 2.4 explains the possible values for these
parameters (in each case, substitute the table alias for “alias” and the
field name for “fieldname”).

Chapter 2

20 Developing Applications, SQL Edition

Value Changes Group Selection to
alias.fieldname Field fieldname in table alias
fieldname Field fieldname (fieldname must be unique)

Figure 2.4 Group Field Override Values

You must specify group overrides beginning with the first level you
want to change and proceeding to the depth desired (that is, you cannot
skip group levels).

RI_ID
This parameter is for database control tables only. The RI_ID
parameter allows you to assign a job number to each report in your
control table. You can then use one or more RI_ID values with the
Viewer command to specify which reports you want to run.
RI_ID values need not be unique. You can assign the same number to
multiple reports, creating a set. You can then run the set by entering a
single RI_ID number on the Viewer command line.

RI_INCLUDE
The optional RI_INCLUDE parameter allows you to control whether a
filter is applied to the report. RI_INCLUDE can have one of four
values:

 S (Saved) means to run the report using the filter saved with it,
if any. The expression in RI_FILTER will be ignored and the
report will be run exactly as it was saved.

 E (Entire) means to run the entire report, ignoring any filter
saved in the report or contained in the RI_FILTER parameter.

 O (Override) means to override the saved filter with the
expression in the RI_FILTER parameter. The report will be run
with the records selected by the RI_FILTER expression.

 ? (Question mark) means to display a dialog box allowing the
user to enter a filter expression or edit the filter saved with the
report. If no filter was saved with the report, the Insert
Condition dialog will display, as shown in Figure 2.5.

 Using the Viewer Executable

Developing Applications, SQL Edition 21

Figure 2.5 Insert Condition Dialog Box

If a filter was saved with the report, the Filter dialog box will display,
as shown in Figure 2.6.

Figure 2.6 Filter Dialog Box

When you use the question mark (?) value for the RI_INCLUDE
parameter, the value of RI_FILTER is always ignored.
Note that RI_INCLUDE has no impact on the RI_WHERE parameter.
If RI_WHERE is specified, it will always be evaluated by your SQL
software directly; any filter will be applied to the result.

RI_LIBRARY
This parameter is necessary only if you are running reports from an
R&R Report Writer, SQL Edition, report library file; it identifies the
library containing the report(s) you want to run. The library name can
include a path. The .RP6 extension is optional. For example, a value of
C:\PROJECT\CUSTOMER identifies the report library as
CUSTOMER.RP6 in the subdirectory \PROJECT on drive C.

Chapter 2

22 Developing Applications, SQL Edition

If you don’t include a path, the Viewer searches for the file in the
default report directory specified with the /R switch on the command
line. If no default is specified on the command line, the Viewer
searches for the library in the default directory specified in the
RSW.INI file. If RSW.INI is not present and no default report directory
is specified, the Viewer searches for the library in the current directory.
If you leave this parameter blank or if the library you specify cannot be
found or read, the Viewer writes an error in the status file and,
optionally, displays an error message box (see RI_DISPERR).

RI_MASTER
This parameter is optional. It contains the name of a table that will
override the master table saved with the report. The master table you
specify should have the same columns as the master table originally
used in the report.
If you omit this parameter (or leave it blank), the Viewer uses the
master table saved with the report.

RI_MEMO
This parameter is optional. It contains the name and/or directory
location of the text memo file used in the report, which will override
the text memo file saved with the report.

 If both a directory and a file name are specified, this directory
is the only directory searched and this file name is the only file
the Viewer searches for.

 If you specify a directory without a file name, the Viewer
searches the specified directory for the text memo file name
saved with the report.

 If you specify a file name without a directory, the Viewer
searches for a file with the specified name in the directory
saved with the report, then in the default data directory as
specified in RSW.INI or as overridden on the command line.

If you leave this parameter blank, the Viewer uses the text memo file
saved with the report, if any.

 Using the Viewer Executable

Developing Applications, SQL Edition 23

RI_NOESC
This parameter is optional. The user escape flag can be either true (T)
or false (F). True means the Cancel button in the status window is not
active while reports are being output. False means the user may select
Cancel during report output to pause or end the job (the status window
appears only when RI_STATUS is set to true). The default value is
false. Note that pressing Cancel will not interrupt execution of the
Viewer during processing of a SELECT statement by a server.
If the user cancels the report, the RO_ECODE entry in the status file
contains a C (see the section in this chapter entitled Understanding
the Viewer Status File).

RI_OUTFILE
This parameter is optional. It contains the name of an output file. Use
it to send report output to a file, or use it in combination with
RI_PRINTER and/or RI_EXPDST to export to any export type saved
with the report. To send the report directly to the saved destination,
omit this parameter or leave it blank.

 When RI_PRINTER is empty or contains the D or question
mark (?) value, the Viewer outputs the report (including printer
codes) to the file specified in RI_OUTFILE .

 When RI_PRINTER contains A, X, or W, the Viewer exports
the report to the file specified in RI_OUTFILE (overriding the
saved file name) as a text file (without printer codes), Xbase
file, or worksheet file.

 When RI_PRINTER contains CSV, MSWORD, or RTF, the
Viewer exports the report to the file specified in RI_OUTFILE
(overriding the saved file name) as a text data (comma-, tab-, or
character-separated) file, Word Merge file, or Rich Text
Format file.

 When RI_PRINTER contains Excel Chart or Excel
PivotTable and RI_EXPDST is F (for file), the Viewer exports
the report to the Excel file specified in RI_OUTFILE.

The output file name can include a path. For example, to send a report
to a text file INVOICE.TXT in the C:\PROJECT\TEXT subdirectory,
specify the following value for RI_OUTFILE:

C:\PROJECT\TEXT\INVOICE.TXT

Chapter 2

24 Developing Applications, SQL Edition

If RI_OUTFILE does not include a path, the Viewer places the file in
the current directory.

RI_PRINTER
This parameter is optional and can have one of the following values:
D, A, P, Excel Chart, Excel PivotTable, RTF, CSV, MSWORD, W,
X, or a question mark (?).
The D value specifies that the report be sent to the display, allowing
the user to preview the report before printing it. After previewing the
report, the user can select Print on the Preview screen to send the
report to the printer saved with the report or specified as the RI_WPTR
value. Note that if the value of RI_PRINTER is D and RI_OUTFILE is
specified, the report will be output to the file specified in
RI_OUTFILE when the user selects Print in the Preview screen.
The A value specifies that the report be sent to the text file named as
the RI_OUTFILE value. The Viewer will export the report as a text
file without printer codes.
The P value specifies that the report be sent to the printer saved with
the report or specified as the RI_WPTR value, even if the report’s
saved destination is a file.
The Excel Chart and Excel PivotTable values specify that the report
be exported to an Excel Chart or Excel PivotTable, respectively. If you
specify one of these values, you can also include a value for
RI_EXPDST to control the output destination (display, file, or printer).
Use the CSV, MSWORD, or RTF value to export to a text data file,
Word Merge file, or Rich Text File, respectively. You can also specify
an RI_OUTFILE value to override the output file name saved with the
report.
To output a report to a worksheet or Xbase file, specify W or X,
respectively, as the RI_PRINTER value and specify the file name as
the RI_OUTFILE value. If you do not specify a file extension, R&R
appends .WKS to worksheet files and .DBF to Xbase files.
The question mark (?) value allows the user to select the print
destination (screen or printer) at report execution. When the value of
RI_PRINTER is a question mark, the user will see the dialog box
shown in Figure 2.7. If RI_WTITLE is specified, the title bar will
contain the RI_WTITLE value. If RI_WTITLE is empty, the title bar
will contain the report name.

 Using the Viewer Executable

Developing Applications, SQL Edition 25

Figure 2.7 Print Destination Dialog Box

The user can select Screen to preview the report, Printer to print it, or
Export to export it. If RI_OUTFILE contains a file name, the report
will be output to the file specified by the RI_OUTFILE value if the
user selects Export.
If you omit this parameter or leave it blank and RI_OUTFILE is empty
or missing, the Viewer outputs the report to the printer saved with the
report or specified as the RI_WPTR value. If you omit this parameter
or leave it blank and RI_OUTFILE contains a file name, the Viewer
outputs the report to a file with printer codes.

RI_REPLACE
The optional RI_REPLACE parameter allows you to supply a
substitute value to override all or part of the SELECT, EXEC, or DEFINE
REPORTVIEW statement used to select rows for a User-SQL report.
When you enter a SELECT, EXEC, or DEFINE REPORTVIEW statement in
Report Designer, you must enclose in double angle brackets (<< >>)
any portion that you may want to replace at report execution. Using
RI_REPLACE, you can provide substitute values for the delimited
portions, leave them intact, or specify that you want them to be ignored
at report execution. You can delimit any text in the statement except
the initial commands SELECT, EXEC, and DEFINE REPORTVIEW, which
cannot be substituted. The initial SELECT, EXEC, or DEFINE REPORTVIEW
must be followed by a space. Note also that nesting parameters is not
allowed — do not insert delimiters within delimiters.
The syntax of RI_REPLACE is a comma-separated list of parameters
enclosed in double angle brackets:

<<param1>>,<<param2>>,<<param3>>,...<<paramN>>

Chapter 2

26 Developing Applications, SQL Edition

The number of parameters in the RI_REPLACE value must match
exactly the number of delimited portions of the SELECT, EXEC, or
DEFINE REPORTVIEW statement saved with the report. Everything
between delimiters will be substituted exactly as entered in place of the
corresponding delimited text in the original statement. Space outside
delimiters is ignored.
For example, suppose you are using this SELECT statement:

SELECT *
FROM customers
WHERE state=’MA’
ORDER BY last_name

You can delimit any parts of the statement except the initial word
SELECT. For example, you might delimit the FROM, WHERE, and
ORDER BY clauses, as shown in this example:

SELECT *

<<FROM customers>>

<<WHERE state=’MA’>>

<<ORDER BY cust_name>>

To provide substitutions for the three delimited sections of the SELECT
statement, you might supply the following RI_REPLACE value in
your control table:

<<FROM customers,sales>>,

<<WHERE customers.cust_no=sales.cust_no AND state=’CA’>>,

<<ORDER BY sale_date>>

To leave any delimited portion intact, use a comma as a place holder.
To replace the WHERE clause and leave the FROM and ORDER BY
clauses intact, you might use this RI_REPLACE value:

,<<WHERE state=’CA’>>,

When you do not want a delimited portion of the statement to be
applied, use empty delimiters (<< >>) to specify a null replacement
value. For example, this RI_REPLACE value specifies that the FROM
clause of the original SELECT should be left intact, and the WHERE and
ORDER BY clauses should be ignored:

,<<>>,<<>>

In general, the application of the RI_REPLACE parameter must yield a
SELECT statement that would itself be valid as the basis of a User-SQL

 Using the Viewer Executable

Developing Applications, SQL Edition 27

report. For example, all columns in the result of the modified SELECT
must be uniquely named. In addition, any columns returned by the
original User-SQL SELECT that are used in the report must also be
returned by the modified SELECT with the same names and types.
Note that RI_REPLACE values are not applied to Auto-SQL reports
(reports created by selecting master and related tables). To insert a
WHERE clause in the SQL statement for an Auto-SQL report, use the
RI_WHERE parameter.

RI_REPORT
This parameter is required (unless a value of R or ? has been supplied
for RI_REPPICK). It contains the name under which the report was
saved. For example, to run a report named “Order Invoice,” enter
Order Invoice as the value for this parameter (note that you do not
need to include the file extension). Except for case, you must enter the
name exactly as it was saved.
If the report you want to run is in a report library, you must also
include the appropriate value for RI_LIBRARY. The report must be in
the library specified by RI_LIBRARY.
If you leave this parameter blank or if the report you select cannot be
retrieved, the Viewer writes an error in the status file and, optionally,
displays an error message box (see RI_DISPERR).

RI_REPPICK
This parameter is optional and can contain one of two values: ? or R.
If you include this parameter, you do not need to include the
RI_REPORT field; if you include both RI_REPPICK and
RI_REPORT values, Viewer ignores the RI_REPORT value.
Use the question mark (?) value in this parameter to have the Viewer
prompt the user to select a succession of reports. When the value is a
question mark (?), Viewer will prompt the user to select a report. After
Viewer executes the selected report, the user will then be prompted to
select another report. This prompt for report selection will repeat after
each report until the user selects Cancel.
Use the R value in this parameter to prompt the user to select just one
report. When the value is R, Viewer will prompt the user to select a
report (as with the ? value), but will not prompt for an additional
report selection after the report has been executed.

Chapter 2

28 Developing Applications, SQL Edition

RI_SORT1 – RI_SORT8
The optional RI_SORT parameters (RI_SORT1 through RI_SORT8)
enable you to specify different sort fields from those saved with the
report. Figure 2.8 explains the possible values for these parameters (in
each case, substitute the table alias for “alias” and the field name for
“fieldname.”).

Value Changes Sort to
+alias.fieldname Field fieldname in table alias, ascending
-alias.fieldname Field fieldname in table alias, descending
alias.fieldname Field fieldname in table alias, ascending
+fieldname Field fieldname, ascending (fieldname must

be unique)
-fieldname Field fieldname, descending (fieldname

must be unique)

Figure 2.8 Values for RI_SORT Parameters

You must specify sort overrides beginning with the outermost sort
field and proceeding to the last level you want to override (that is, you
cannot skip sort levels).

RI_STATUS
The RI_STATUS parameter enables you to specify whether the Viewer
should display a status window while it is generating a report. If the
parameter is true (T), the Viewer will display a Status window. If
RI_NOESC is set to false, the Status window will contain a Cancel
choice that allows the user to terminate a report in progress. Note that
pressing Cancel will not interrupt execution of the Viewer during
processing of a SELECT statement by a server.
If the parameter is missing, empty, or specifies a false logical value
(F), the Viewer will not display a Status window but will instead
display as an icon while it is running.

RI_TEST
This parameter is optional. The test pattern flag can be either true (T)
or false (F). True means to display a prompt before printing the report
to allow the user the option of printing a test pattern. False means

 Using the Viewer Executable

Developing Applications, SQL Edition 29

don’t offer a choice to print a test pattern. If the parameter is blank, the
user is not offered the choice of printing a test pattern.
A test pattern is useful for aligning forms in the printer. The user can
print the test pattern as many times as necessary and then print the
report. If you enter T, the Viewer displays a box containing OK,
Cancel, and Print buttons. The user can select OK and print as many
test patterns as necessary to align the forms. Once the forms are
aligned, the user can select Print to begin printing the actual report.
Note that a test pattern includes only page header, record, and page
footer lines.

RI_WHERE
The optional RI_WHERE parameter enables the Viewer to insert a
WHERE clause in the SQL statement for an Auto-SQL report. If you
or your users are proficient in SQL, you may want to use this
parameter instead of RI_FILTER and RI_INCLUDE to select records.
Since the WHERE clause is evaluated directly by the SQL software,
using RI_WHERE can improve performance and enable you to make
use of any WHERE clause supported by your SQL software.
The WHERE clause specified with this parameter always affects the
report, regardless of whether a filter was saved with the report. If you
have also used RI_FILTER and RI_INCLUDE to select records, the
effect of RI_WHERE is as follows:

 If RI_INCLUDE is S for “Saved,” both the filter saved with the
report and the clause in RI_WHERE are used to select records.

 If RI_INCLUDE is O for “Override,” both the filter expression
in RI_FILTER and the clause in RI_WHERE are used to select
records.

 If RI_INCLUDE is E for “Entire,” only the RI_WHERE clause
is used to select records.

 If RI_INCLUDE is a question mark (?) to allow the user to
enter a filter interactively, both the user’s filter expression and
the RI_WHERE clause are used to select records.

Note that RI_WHERE values are not applied to User-SQL reports. To
override the selection conditions for a User-SQL report, use the
RI_REPLACE parameter.

Chapter 2

30 Developing Applications, SQL Edition

RI_WPORT
This parameter is optional. Enter a value such as LPT1: to override the
printer port (and the printer associated with that port) saved with the
report. Note that the colon is required. If both RI_WPTR and
RI_WPORT values are supplied, they must match an installed
Windows printer.
You can also use the question mark (?) value or enter the word
Default for this parameter. When RI_WPORT contains a question
mark, the user will see the Print dialog box shown in Figure 2.9. When
RI_WPORT contains Default, Viewer will use the default Windows
printer and port. (See the description of the RI_WPTR parameter.)

RI_WPTR
This parameter is optional. Enter one of the following values to
override the printer saved with the report:

 The name of an available Windows printer (for example, “HP
LaserJet Series III”). The value is case insensitive (that is, you
can enter it in upper, lower, or mixed case). If you enter a value
for this parameter and RI_WPORT is blank, Viewer uses the
port associated with the printer name in the list of available
printers.

 The question mark (?) value, to allow the user to select a
printer at report execution. When RI_WPTR contains a
question mark, the Print dialog displays, as shown in Figure
2.9.

Figure 2.9 Print Dialog Box

 Using the Viewer Executable

Developing Applications, SQL Edition 31

 The word Default to force the Viewer to use the current default
Windows printer. Use this setting only if you are sure that the
default printer is compatible with the layout of your Viewer
report(s)

The Printers applet (accessible from the Windows Control Panel)
controls which printers are listed in the Print dialog box. Viewer
initially selects the printer saved with the report. The user can select
another printer and port as necessary.
If this parameter is blank, the printer saved with the report will be
used. If the report was saved with the “Print to File” option selected
and the value of RI_PRINTER is blank, the RI_WPTR value controls
which printer driver the Viewer will use. If the value of RI_PRINTER
is A, CSV, MSWORD, RTF, W, or X for export to a file, the Viewer
will ignore the value in RI_WPTR.

RI_WTITLE
This parameter is optional. Use this parameter to specify a report title
(for example, “Quarterly Profits”) to be displayed in the following:

 The Title Bar of the Preview window;
 The Print Status window (if RI_STATUS = T);
 Below the Viewer icon (if RI_STATUS = F);
 The title bar of the dialog box that displays when a question

mark is specified as the value for RI_REPPICK, RI_PRINTER,
or any user-defined parameter value.

If this parameter is blank, the report name will be used for the title.

Parameters to Control Viewer Preview Display
The parameters listed in Figure 2.10 control the size and appearance of
the preview window at report execution.

Chapter 2

32 Developing Applications, SQL Edition

Parameter
Name

Controls

Data
Type

Max.
Width

RI_WBORDER Presence and type of border N 1
RI_WCTRL Presence of system control box

in caption bar
L 1

RI_WHEIGHT Height of preview window in
pixels

N 4

RI_WLEFT Left position of preview
window in pixels

N 4

RI_WMAX Presence of maximize button in
caption bar

L 1

RI_WMIN Presence of minimize button in
caption bar

L 1

RI_WTOP Top position of preview
window in pixels

N 4

RI_WWIDTH Width of preview window in
pixels

N 4

Figure 2.10 Control Parameters for Report Preview

These parameters are explained in the following sections.

RI_WBORDER
This parameter enables you to control whether the Viewer preview
window is fixed or sizable. You can enter one of the following
numeric values:

 1 results in a fixed-size preview window with a standard
border.

 2 results in a variable-size preview window with a standard
border.

RI_WCTRL
Use this parameter to specify whether the preview window will have a
system control box (for switching to other applications or for closing
the preview window) in the caption bar. If this parameter contains a
logical True value, the window will have a control box; if False, the
window will not have a control box.

 Using the Viewer Executable

Developing Applications, SQL Edition 33

RI_WHEIGHT
This parameter controls the height of the preview window. Enter the
height value in screen pixels.

RI_WLEFT
This parameter controls where the left edge of the preview window
will be anchored. Enter the position in screen pixels.

RI_WMAX
Use this parameter to control whether the preview window will have a
maximize control in the caption bar at report execution so that a user
can run a report full-screen. If this parameter contains a logical True
value, the window will have a maximize control; if False, the window
will not have a maximize control.

RI_WMIN
Use this parameter to control whether the preview window will have a
minimize control in the caption bar at report execution. If this
parameter contains a logical True value, the window will have a
minimize control; if False, the window will not have a minimize
control.

RI_WTOP
This parameter controls where the top of the preview window will be
anchored. Enter the position in screen pixels.

RI_WWIDTH
This parameter controls the width of the preview window. Enter the
width value in screen pixels.

Understanding the Viewer Status File
While the Viewer is executing, it writes status information into a text
file and, if the RI_DISPERR flag is T, may display error message
boxes. For an explanation of the RI_DISPERR flag, see the description
of the Viewer Control Parameters in the Using Control Tables and
Files section of this chapter.

Chapter 2

34 Developing Applications, SQL Edition

By default, the Viewer creates a status file called RSWRUN.OUT in
the current directory. You can specify a different file name or alternate
directory using the /O switch. The status file is in Windows .INI-style
format and has the header [RSW Runtime output].
After calling the Viewer, you should check the status file for
information about Viewer processing. If the Viewer encountered an
error, the file will contain an error message that explains why a report
was canceled, as well as an error code that lets you determine the type
of error. The status file also contains the number of reports and pages
output, so a report can be restarted where it left off.
The Viewer will always create a status file unless one of the following
conditions prevents it:

 A Viewer command-line error;
 A link directory error;
 A disk error;
 Insufficient memory.

To avoid being confused by multiple status files, delete existing status
files before calling the Viewer. If you are using the Viewer on a
network, use the /O switch to specify a unique status file for each user.

Status File Entries
Figure 2.11 lists the entries in the status file. Each entry name has the
prefix RO_.

Entry Name Contents
RO_ECODE Error code
RO_EMSG Error message
RO_REPORTS Number of reports completed
RO_PAGES Last report page completed
RO_RIRECNO RI_ID value of last control table record

processed

Figure 2.11 Entries in Viewer Status File (RSWRUN.OUT)
Entries appear one per line in the format <entry> = <value>, as in
RO_ECODE = N.

 Using the Viewer Executable

Developing Applications, SQL Edition 35

RO_ECODE
The error code entry contains one of the following characters:

 N – The Viewer completed without error; the RO_EMSG value
is blank.

 C – The user selected Cancel to cancel a report; the RO_EMSG
message is “Report canceled.”

 J – There is a syntax error in the Viewer command or the
control file; see the message in the RO_EMSG entry.

 R – There is an error caused by the report definition or by the
value in a control file parameter; see the RO_EMSG entry.

RO_EMSG
The error message value is blank if Viewer processing completed
without an error. If processing was canceled for any reason, this entry
contains the error message. If RO_ECODE contains C, the message is
“Report canceled,” meaning the user canceled a report. If RO_ECODE
contains R, the message is the same as the one displayed when you
attempt to output the report from within Report Designer.
If RO_ECODE contains J, there is an error in the Viewer command or
in the control table or file.

RO_REPORTS
This entry contains the number of reports that were completed. For
example, if the Viewer is called to print three reports and the printer
jams during the second report, this entry contains the number 1,
indicating that one report was completed. Use this number to
determine which report(s) did not complete.

RO_PAGES
This entry contains the number of the last page completed in the report
(or in the most recently processed report, if the Viewer is executed
with a multi-report command file or control table). If a report
terminated due to an error, the entry contains the number of the last
page completed before the error occurred. Use this number to restart a
canceled report at the page where the error occurred.
For example, if you are printing pages 10 through 20 of a report and
the printer jams on page 15, this entry will contain 14 (the number of

Chapter 2

36 Developing Applications, SQL Edition

the last page that printed successfully). If RO_PAGES contains 14, you
can restart the report at page 15 by entering 15 in RI_BEGPAGE and
20 in RI_ENDPAGE.
Note that the Viewer does not update the RO_PAGES field after each
page unless the value of RI_CHKTIME in the control file is P. See the
section in this chapter entitled Using Control Tables and Files for a
description of RI_CHKTIME.

RO_RIRECNO
If you are controlling the Viewer with a control table, this field
contains the RI_ID value of the record specifying the last report that
was processed. This number uniquely identifies the report that caused
the error if you used unique RI_ID values for each row in the table.

Application Calls to the Report Viewer
This section provides examples illustrating how you can incorporate
calls to the Viewer in C, Visual Basic, and Power Builder applications.
Note that these examples are provided only to demonstrate the syntax
for calls to the Viewer for each language.
If your application includes code to check the Viewer status file (by
default, RSWRUN.OUT), keep in mind that up-to-date information
from that file will not be available until Viewer reports complete. To
avoid confusion, delete any existing status file before calling Viewer.

Calling the Viewer from C
The Windows API provides a function named WinExec for executing
programs. To call the Viewer from a Windows C program, you could
include a function such as the one illustrated in Figure 2.12.

 Using the Viewer Executable

Developing Applications, SQL Edition 37

BOOL RunThisReport (LPSTR lpRunin, int iReport, LPSTR lpRptlib)
{
 // Run a single report.
 // Input:
 // lpRunin pointer to Viewer control table name
 // iReport control table record number of report
 // lpRptlib pointer to default library directory name
 // Output: FALSE if Windows could not execute the Viewer program

 char szBuffer [128];
 UINT error;

 wsprintf(szBuffer,"rswrun /TT%s %d /R%s",lpRunin,iReport,lpRptlib);
 if ((error=WinExec((LPSTR)szBuffer, SW_SHOW)) < 32)
 {
 LoadString(hAppInst, EXE_ERR+error, szBuffer, sizeof(szBuffer));
 MessageBox(hAppWnd, szBuffer, szAppname, MB_ICONSTOP);
 return FALSE;
 }
 return TRUE;
}

Figure 2.12 Calling the Viewer from a C Program
In this example, the call to the Viewer includes the /TT switch to
identify the text control file and the /R switch to specify a default
report directory. You can include any combination of the command
switches explained in the Viewer Command Switches section. Note
that the second parameter supplied to WinExec, SW_SHOW, is
ignored if you have included control table values to govern the display.

Calling the Viewer from Visual Basic
Visual Basic provides a function named Shell that takes two
arguments: a command-line string and a Windows display style. The
Viewer ignores the second argument if display characteristics are
specified by control table values. Figure 2.13 illustrates a subroutine
that could be used to call the Viewer from a Visual Basic application.

Sub Command1_Click ()
cmd$ = "c:\rsw\rswrun.exe /TTc:\rsw\rrsample\rswrunin.txt"
i% = Shell(cmd$, 1)
End Sub

Figure 2.13 Sample Visual Basic Subroutine Calling the Viewer

In this example, Viewer is executed using the Viewer control file in
C:\RSW\RRSAMPLE.

Chapter 2

38 Developing Applications, SQL Edition

Calling the Viewer from PowerBuilder
You can execute the Viewer from a PowerBuilder script using the
SetProfileString command to change any of the parameters in the
control file and the RUN command to execute the Viewer.
Figure 2.14 illustrates a script that could be used to call the Viewer
from a PowerBuilder application.

SetProfileString("D:\RSWRUN.IN","rswrun","ri_copies","2")
run("RSWRUN.EXE /TTd:\rswrun.in /Od:\rswrun.out /U" +
 sqlca.logid + "/P" + sqlca.logpass)

Figure 2.14 Sample PowerBuilder Script Calling the Viewer

Developing Applications, SQL Edition 39

Chapter 3
Parameter Passing
Introduction

You can control some features of the layout and content of reports by
prompting users to enter values for parameters, then passing the values
to reports. Typically, you prompt the user for a text string or other data
item that is not stored in the database. For example, you might prompt
the user for his or her name and use the name in a “Report Author”
field in the page footer or title.
You can also use parameter passing to control report processing at
report execution. You might want to allow the user to select the sort
order for the report. Rather than creating several different reports, you
can create one report and present the user with a menu that offers a
choice of sort options. You then pass the user’s choice to the Viewer
and use a calculated field expression to determine the sort field.
You can pass parameters to a report in two ways:

 Define special parameters in the Viewer control table or file. At
report execution, prompt the user to enter values and pass the
values to your report using a calculated field whose expression
includes the RIPARAM() function.

 Create your own menus and prompts and store user entries and
selections in a special parameter table. When you create the
report, join the parameter table to the report’s master table and
use values from the parameter table in the report.

Passing Control Parameter Values
Follow these general steps to pass values to reports using control table
or file parameters:
1. In the Viewer control table or file, define parameters for values you

want to pass to the report.

Chapter 3

40 Developing Applications, SQL Edition

2. Prompt the user to enter a value for the parameter in one of two
ways:

 Create your own menus or prompts within your application.
 Enter a question mark as the value of the control table

parameter.
3. Incorporate the user’s entry into the report using the RIPARAM()

function in a calculated field expression.
The following sections describe each step in more detail.

Defining Parameters
In addition to the predefined parameters listed in Chapter 2, “Using the
Report Viewer,” your control table or file can include parameters you
define. A parameter can have any name you like (for example
CONAME), and it can be up to 512 characters wide. You can define as
many parameters as you need for your application. The control table or
file need not include any user-defined parameters. If any are present,
the table or file need not contain values for all of them.

Prompting for User Input
You can get user input in two ways:

 Supply a menu or prompt in your application that leads the user
to supply a value. Store this value in the user-defined parameter
in the Viewer control table or file.

 Enter a question mark (?) value for any user-defined parameter
that takes a character string. Whenever a user-defined
parameter contains a question mark, the user will be prompted
to enter a value.

Using the Question Mark Parameter Value
The simplest way to get user input for reports is to use a question mark
(?) as the value for a user-defined parameter. Optionally, the question
mark can be followed by the text you want to appear as a prompt. For
example, if you want to prompt the user for his or her name, you might
create an AUTHOR parameter in your control table or file and give it
the value "?Enter your name:".
As a result, the user will see a dialog like the one in Figure 3.1.

 Parameter Passing

Developing Applications, SQL Edition 41

Figure 3.1 Viewer Dialog Box with Prompt

The size and shape of this dialog box is the same for all user-defined
parameters. The title bar will contain the value of the RI_WTITLE
parameter. If RI_WTITLE is not specified, the Viewer uses the report
name. The Viewer prohibits the user from entering more than 512
characters. If the user selects the Cancel button, the report will not run
and the “Canceled” message will be written to the status file.
If your control table parameter contains a ? without a text string, the
Viewer displays the dialog box shown in Figure 3.1 with the prompt
“Enter value for (PARAMETER NAME)”, as in “Enter value for
AUTHOR”.

Incorporating User-Supplied Values in Reports
Once the user has entered or selected a value, you pass the value to
your report using the RIPARAM() function in a calculated field
expression. RIPARAM() takes a control file parameter as its argument
and returns the value of the parameter as a string. In this way, the
user’s input becomes available to the report.
For example, in a general ledger application, you might create a
control file parameter CONAME for the company name, then prompt
the user to enter a company name. To use the company name on the
report, create a calculated field in R&R whose expression is:

RIPARAM("CONAME")

You can place the calculated field wherever you want the company
name to appear on the report.
Although this example uses an RIPARAM() calculated field to
provide user input as text in the report, you can use such fields to
perform many different functions in a report.

Chapter 3

42 Developing Applications, SQL Edition

Using a Parameter Table
You can also pass parameters to a report by storing user-supplied
values in a separate table called a parameter table and joining this
table to the report’s master table.
To pass parameters to a report using a parameter table, follow these
steps:
1. Decide on the parameters you need and create a parameter table

using your database software.
2. In Report Designer, create a new report or retrieve and modify an

existing report.
3. Create a calculated field that you will use to join the master table to

the parameter table.
4. Join the master table to the parameter table using the R&R

calculated field as the join field from the master table and a unique
ID field in the parameter table to match the calculated join field in
the master table.

5. Use the fields from the parameter table in your report and save the
report.

6. Create a database program that will get the information from the
user, store it in the parameter table, and call the Viewer.

The following sections describe steps 1 through 4 in more detail and
provide an example of how to use a parameter table in an application.

Creating the Parameter Table
Your parameter table can contain as many parameters as you need for
your application. For example, you may want the user to supply a date,
a range of dates, an account number, a category name, a list of items,
or a logical true/false flag. Include one column for each parameter.
You can use any data type. Assign an appropriate column width.
The parameter table must contain a column that serves as a unique
identifier for each row in the table. You will use this column to join the
parameter table to the master table in Report Designer. The column
can have any data type supported by Report Designer.
Most likely, your parameter table will have a single row. However, if
you want to create one parameter table for use with multiple reports,

 Parameter Passing

Developing Applications, SQL Edition 43

the table should have a row for each report. In this case, you might use
the report name as the join column in the parameter table.

Creating the Calculated Join Field
In Report Designer, use Calculations ⇒ Calculated Field to create a
calculated field to join the master table to the parameter table. The
calculated field’s expression should be a constant equal to the join
column value for the appropriate parameter table row. If your
parameter table has a single row, you might have used the number 1 as
the join column value. In that case, the calculated field’s expression is
simply 1. If your parameter table has multiple rows, you might have
used the report name as the join column. In that case, the calculated
field’s expression is the report name that identifies the appropriate
row, as in “INVOICE1.”
The calculated join field’s expression must be database-evaluatable.
Report Designer precedes the names of database-evaluatable calculated
fields with an X in field lists.

Joining the Master Table and the Parameter Table
Use Database ⇒ Joins to join the master table and the parameter table.
Use the calculated field as the join field from the master table and the
ID column as the join field from the parameter table.

Chapter 3

44 Developing Applications, SQL Edition

Developing Applications, SQL Edition 45

Chapter 4
Accessing the Viewer DLL
Introduction

This chapter explains how to use the Viewer DLL to run reports from
within Windows application programs. As noted in Chapter 1, the
Viewer DLL provides one of three methods for running reports. The
other methods are explained in Chapter 2, “Using the Report Viewer,”
and Chapter 5, “Using the Custom Control.”
Two sample applications demonstrating use of the Viewer DLL are
installed into appropriate subdirectories of the SAMPLE directory:

• SAMPC, which is installed in SAMPLE\C, demonstrates the
use of the DLL in C code.

• SAMPMFC, which is installed in SAMPLE\MFCDLL,
demonstrates the use of the DLL in MFC code.

Each sample has an accompanying README file that explains it in
more detail.
The Viewer DLL provides a direct application programming interface
to the Report Viewer. The general logic of using this API to invoke the
Viewer is as follows:

 Select a report or report/library combination with
chooseReport or getRuntimeRecord. Or, select a report
library with getNewReportHandle and setLibrary.

 Use various routines to get and set Viewer control parameters.
 Use writeRuntimeRecord to save the parameters in a Viewer

Control File for later execution or execRuntime to use the
Viewer to run the report immediately.

 Clean up the current report with endReport.
The routines provided by this API are grouped into five categories:

 Action Routines
 Get-Parameter Routines
 Set-Parameter Routines
 User-Interface Routines
 Error-Handling Routines

Chapter 4

46 Developing Applications, SQL Edition

Action Routines
Action routines are used to begin working with the Viewer DLL or a
specific report, to run a report, and to free resources used in working
with a report or the Viewer DLL as a whole.

 chooseReport specifies a report or library/report combination.
 endReport cleans up resources associated with a given report.
 execRuntime runs a given report.
 getNewReportHandle obtains the handle of an empty report-

information structure.
 getRuntimeRecord specifies a report or library/report

combination along with parameter values as defined in a
Viewer Control File record.

 writeRuntimeRecord writes to a Viewer Control File record
the current parameter values associated with a given report.

Get-Parameter Routines
Get-parameter routines are used to obtain the values of various
parameters as they were saved with the report, or as they have been
overridden by values from a Viewer Control File or by previous uses
of set-parameter routines. It is important to understand the concept of
the “current” value of a parameter.

 If you have initiated the processing of a report via a call to
chooseReport and have not yet used a set-parameter routine
for a given parameter, the current value of that parameter is the
value saved in the report. Once you have used a set-parameter
routine for the parameter, the current value is the value you
specified via the set-parameter routine.

 If you have initiated the processing of a report via a call to
getRuntimeRecord and have not yet used a set-parameter
routine for a given parameter, the current value of the
parameter is the value saved in the report unless the parameter
is overridden in the Viewer control file record, in which case
the current value is the value from the control file record. Once
you have used a set-parameter routine for the parameter, the
current value is the value you specified via the set-parameter
routine.

 If you have initiated the processing of a report via a call to
getNewReportHandle and have not yet used a set-parameter

 Accessing the Viewer DLL

Developing Applications, SQL Edition 47

routine for a given parameter, the current value of the
parameter is the default value of that parameter. Once you have
used a set-parameter routine for the parameter, the current
value is the value you specified via the set-parameter routine.

All get-parameter routines return the current values of parameters.
Once you have used the set-parameter routine for a given parameter,
there is no way to get a previous value. If you need to be able to get
original values, use chooseReport and then use get-parameter routines
to get the original values. Your program must remember the original
values once it begins using set-parameter routines to override them.
Alternatively, use chooseReport and remember your overrides instead
of calling set-parameter routines. Then call the set-parameter routines
just before calling execRuntime or writeRuntimeRecord.

 getBeginPage gets the value of the starting-page-number
parameter.

 getCopies gets the value of the number-of-copies parameter.
 getDataSource gets the value of the data-source parameter.
 getDisplayErrors gets the value of the display-errors flag.
 getDisplayStatus gets the value of the display-status-window

flag.
 getEndPage gets the value of the ending-page-number

parameter.
 getExportDest gets the value of the export-destination flag.
 getFilter gets the filter expression.
 getFilterUsage gets the value of the filter-usage flag.
 getFirstFieldName gets the name of the first field from tables

used in the report.
 getFirstFilteredFieldName gets the name of the first field

suitable for use as a sort or group field.
 getFirstGroupField gets the name of the first group field of

the report.
 getFirstJoinInfo gets the values of parameters pertaining to

the first related table used in the report.
 getFirstReplace gets the value of the first replaceable string in

the User-SQL statement saved with the report.
 getFirstSortField gets the name of the report’s first sort field.
 getFirstUserParam gets the name of the first user-parameter

used in the report.

Chapter 4

48 Developing Applications, SQL Edition

 getLibrary gets the name of the report library parameter.
 getMasterTableName gets the name of the master table used

in the report.
 getMemoName gets the name of the ASCII memo file used in

the report.
 getNextFieldName gets the name of the next field from tables

used in the report.
 getNextFilteredFieldName gets the name of the next field

suitable for use as a sort or group field.
 getNextGroupField gets the name of the next group field of

the report.
 getNextJoinInfo gets the values of parameters pertaining to the

next relation used in the report.
 getNextReplace gets the value of the next replaceable string in

the User-SQL statement saved with the report.
 getNextSortField gets the name of the next sort field of the

report.
 getNextUserParam gets the name of the next user-parameter

used in the report.
 getOutputDest gets the value of the output-destination

parameter.
 getOutputFile gets the name of the output file.
 getPreventEscape gets the value of the prevent-user-escape

flag.
 getPrinter gets the name of the current printer.
 getPrinterPort gets the name of the current printer port.
 getReportPick gets the value of the report-selection flag.
 getStatusEveryPage gets the value of the report-status-

frequency flag.
 getTestPattern gets the value of the print-test-pattern flag.
 getWinTitle gets the value of the window-title parameter.

Set-Parameter Routines
Set-Parameter routines are used to override the existing values of
various report parameters. Once you have called a given set-parameter
routine, the value returned by the corresponding get-parameter routine
will be the value most recently set for that parameter.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 49

 setBeginPage sets the value of the starting-page-number
parameter.

 setCopies sets the value of the number-of-copies parameter.
 setDatabase sets the value of the database parameter.
 setDataDir specifies an override for the default data directory.
 setDataSource specifies a data source.
 setDisplayErrors specifies whether to display errors.
 setDisplayStatus specifies whether to display a status window.
 setEndPage sets the value of the ending-page-number

parameter.
 setExportDest sets the value of the export-destination flag.
 setFilter specifies a filter expression.
 setFilterUsage sets the value of the filter-usage flag.
 setGroupField sets the name of a group field.
 setImageDir specifies an override for the default image

directory.
 setJoinInfo sets the values of parameters pertaining to a related

table used in the report.
 setLibrary specifies a report-library.
 setLibraryDir specifies an override for the default library

directory.
 setMasterTableName sets the name of the master table used

in the report.
 setMemoName sets the name of the ASCII memo file used in

the report.
 setOutputDest sets the output-destination flag.
 setOutputFile sets the name of the output file.
 setPassword specifies the password for logging into a

database.
 setPreventEscape specifies whether the user should be

allowed to terminate the report.
 setPrinter specifies the name of the printer to be used in

generating a report.
 setPrinterPort specifies the name of the printer port.
 setReplace specifies a User-SQL replacement string.
 setReportPick specifies the optional use of a report-selection

dialog in the Viewer that allows the user to select one or more
reports at report execution.

Chapter 4

50 Developing Applications, SQL Edition

 setSortField specifies the name of a sort field.
 setStatusEveryPage specifies how often report status should

be returned.
 setStatusFileName specifies the filename for returning status

information from the Viewer executable.
 setSuppressTitle specifies whether to print Title and Summary

areas of reports when no records are found.
 setTestPattern specifies whether to generate a test pattern.
 setUserName specifies the user name for logging into a

database.
 setUserParam specifies a value for a user-parameter used in

the report.
 setWhere sets the value of an additional or replacement where

clause for Auto-SQL reports.
 setWinBorderStyle sets the style of the preview window

border.
 setWinControlBox specifies whether the preview window

should include a control box.
 setWinHeight specifies the height of the preview window.
 setWinLeft specifies the position of the left edge of the

preview window.
 setWinMaxButton specifies whether the preview window

should include a maximize button.
 setWinMinButton specifies whether the preview window

should include a minimize button.
 setWinTitle specifies the window title to be used in certain

Viewer windows.
 setWinTop specifies the position of the top edge of the

preview window.
 setWinWidth specifies the width of the preview window.

User-Interface Routines
User-Interface routines use Windows dialogs to present the user with a
list of alternatives for various report parameters.

 chooseDataSource is used to present the user with a dialog
from which to select a data source.

 chooseTable is used to present the user with a dialog from
which to select a table.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 51

 choosePrinter is used to present the user with a dialog from
which to select a printer.

Error-Handling Routines
The Error-Handling routines are used to obtain information about
errors resulting from calls to the other routines.

 getErrorInfo is used to obtain an error code and/or error text
relating to the most recent error condition.

 resetErrorInfo is used to make the Viewer DLL forget the
current value of the error code and error text. This is useful if
you only check for errors after certain calls and want to be
certain that the error status you obtain via getErrorInfo is not
from some previous call.

Functions Provided by the Viewer DLL
The following sections present detailed descriptions of the functions
provided by the Viewer DLL API. The functions are listed in
alphabetical order. For a listing of functions by category, see the
preceding section of this chapter. Each function description begins
with a function prototype, which is followed by a brief description of
each argument, a list of values returned by the function, a function
description, a list of related functions, and an example in C of a call to
the function.
The API for the Viewer DLL is defined in two header files, one named
RSRRPT32.H, for use in C/C++ programs, and one named
RSDECL32.BAS for use in Visual Basic programs.

chooseDataSource
BOOL FAR PASCAL chooseDataSource (int hReport, LPSTR lpszDataSource,

int dsSize);

 hReport Report handle.
 lpszDataSource Address of buffer in which to return selected data source and in

which to optionally specify an initial data source.
 dsSize Size of lpszDataSource buffer.
Return Value

The chooseDataSource function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Chapter 4

52 Developing Applications, SQL Edition

Description

Use chooseDataSource to allow the user to interactively select a new data source for use
with the report specified by hReport. The name of the data source selected by the user will
be returned in the buffer specified by lpszDataSource to the extent allowed by dsSize. If,
on entry, lpszDataSource contains the name of an available data source, that data source
will be highlighted initially in the list of data sources presented to the user. The value of
the data source selected by the user will become the current data source. There is no need
to call setDataSource to make it current.

Related Functions

getDataSource, setDataSource

Example

To allow the user to select a new data source for the report whose handle is hRpt, showing
the current data source as the initial choice:

{
 char buf[100];

 getDataSource (hRpt, (LPSTR)buf, 100);
 chooseDataSource (hRpt, (LPSTR)buf, 100);
}

choosePrinter
BOOL FAR PASCAL choosePrinter(int hReport, LPSTR lpszPrinter, int prSize,

LPSTR lpszPort, int poSize);

 hReport Report handle.
 lpszPrinter Address of buffer in which to return selected printer name.
 prSize Size of lpszPrinter buffer.
 lpszPort Address of buffer in which to return selected printer port.
 poSize Size of lpszPort buffer.
Return Value

The choosePrinter function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use choosePrinter to allow the user to interactively select a new printer and printer port.
The name of the printer selected by the user will be returned in the buffer specified by
lpszPrinter to the extent allowed by prSize. The name of the printer port selected by the
user will be returned in the buffer specified by lpszPort to the extent allowed by poSize.

Related functions

setPrinter, setPrinterPort, getPrinter, getPrinterPort

 Accessing the Viewer DLL

Developing Applications, SQL Edition 53

Example

To allow the user to select a new printer and printer port for the report whose handle is
hRpt and then apply those selections to the report:

{
 char prbuf[100];
 char pobuf[10];

 choosePrinter (hRpt, (LPSTR)prbuf, 100,(LPSTR)pobuf, 10);
 setPrinter (hRpt, (LPSTR)prbuf);
 setPrinterPort (hRpt, (LPSTR)pobuf);
}

chooseReport
int FAR PASCAL chooseReport (LPSTR lpszAppName, LPSTR lpszLibName, int lSize,

LPSTR lpszRepName, int rSize, LPSTR lpszUserName, LPSTR lpszPassword,
LPSTR lpszDataSource, int dSize);

 lpszAppName Name of calling application.
 lpszLibName Name of report library, or buffer in which to return name of library,

if any.
 lSize Size of lpszLibName buffer.
 lpszRepName Name of report, or buffer in which to return name of report.
 rsize Size of lpszRepName buffer.
 lpszUserName Name of user, for connecting to data source.
 lpszPassword Password, for connecting to data source.
 lpszDataSource Name of data source, or buffer in which to return name of data

source.
 dSize Size of lpszDataSource buffer.
Return Value

The chooseReport function returns a report-information handle if there are no errors. A
return value of zero indicates an error. To obtain more information about the error, use
getErrorInfo.

Description

The lpszLibName argument specifies the name of a report library, points to an empty
buffer, or is a NULL pointer. The lpszRepName argument specifies the name of a report
file, specifies the name of a report contained in a report library, points to an empty buffer,
or is a NULL pointer. How chooseReport interprets these arguments is described below.

If lpszLibName and lpszRepName both point to non-empty buffers, chooseReport opens
the library specified by lpszLibName, reads the report specified by lpszRepName, and
prepares a report-information structure based on that report.

If lpszLibName points to a non-empty buffer and lpszRepName points to an empty buffer
or is NULL, chooseReport assumes lpszLibName contains the name of a report library

Chapter 4

54 Developing Applications, SQL Edition

and presents a dialog via which the user can select a report from those available in the
specified library. After the user selects a report, chooseReport opens the specified library,
reads the selected report, copies the selected report name into lpszRepName to the extent
allowed by rSize (unless lpszRepName is NULL or rSize is zero), and prepares a report-
information structure based on that report.

If lpszRepName points to a non-empty buffer and lpszLibName points to an empty buffer,
chooseReport assumes lpszRepName contains the name of a report file, reads the report
from the specified file, and prepares a report-information structure based on that report.

If both lpszLibName and lpszRepName point to empty buffers or are NULL,
chooseReport displays a File-Open dialog, via which the user can select a report file or a
report library. If the user selects a report file, chooseReport reads the selected report,
copies the report name into lpszRepName to the extent allowed by rSize (unless
lpszRepName is NULL or rSize is zero), and prepares a report-information structure based
on that report. If the user selects a report library, chooseReport presents a dialog via
which the user can select a report from the list of reports available in the selected library.
After the user selects a report, chooseReport opens the library, reads the selected report,
copies the library name into lpszLibName to the extent allowed by lSize (unless
lpszLibName is NULL or lSize is zero) and the report name into lpszRepName to the extent
allowed by rSize (unless lpszRepName is NULL or rSize is zero), and prepares a report-
information structure based on that report.

If lpszLibName or lpszRepName (when interpreted as a report file name) does not include
a path, the Viewer looks for the a file of that name in the default library directory specified
in RRW.INI. If no default is specified in the INI file either, the Viewer looks for the file in
the current directory.

The handle returned by chooseReport is used as input to most other functions contained
within this API.

The lpszAppName argument identifies the calling application.

The lpszUserName and lpszPassword arguments are optional and can be used to specify a
username and password, respectively for use when connecting to the data source to be used
with the report specified by lpszRepName or chosen by the user.

The lpszDataSource argument is optional and can be used to specify a data source
override for the specified report. This can be useful if the specified report either contains
no data source information, or if the data source in use when the report was saved no
longer exists or does not exist on the current system. The lpszDataSource argument can
be:

• the name of a data source, in which case the data source saved with the
report (if any) is ignored in favor of the specified data source.

• a pointer to an empty buffer of size dSize, in which case the data source
saved with the report will be used, if possible, or if the saved report has no
data source or its data source is invalid, the user will be presented with a

 Accessing the Viewer DLL

Developing Applications, SQL Edition 55

"choose data source" dialog. The data source's name will be returned in
lpszDataSource to the extent allowed by dSize.

• NULL, in which case the data source saved with the report will be used, if
possible, or if not possible one of the errors: "No data source specified in
report" or "Cannot find data source 'name'" will be returned.

Related Functions

endReport, getRuntimeRecord, setUserName, setPassword

Example

To use the report "Guests" from the library c:\libs\reports.rp6 with a username of "Jack
Paar", a password of "Tonight", and a data source of "Entertainers":

{
 int hRpt;
 hRpt = chooseReport ((LPSTR)"Application Name",
 (LPSTR)"c:\\libs\\reports.rp6", (LPSTR)"Guests",
 (LPSTR)"Jack Paar", (LPSTR)"Tonight",
 (LPSTR)"Entertainers", 13);
}

chooseTable
BOOL FAR PASCAL chooseTable (int hReport, LPSTR lpszTable, int tSize,

LPSTR lpszDataSource, int dsSize, LPSTR lpszDatabase, int dbSize);

 hReport Report handle.
 lpszTable Address of buffer in which to return table name.
 tSize Size of buffer pointed to by lpszTable.
 lpszDataSource Address of buffer in which to return data source name or in which a

data source is specified.
 dsSize Size of buffer pointed to by lpszDataSource.
 lpszDatabase Address of buffer in which to return database name or in which a

database is specified.
 dbSize Size of buffer pointed to by lpszDatabase.
Return Value

The chooseTable function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use chooseTable to allow the user to interactively select a new table, database, and data
source for use with the report specified by hReport. The name of the table selected by the
user will be returned in the buffer specified by lpszTable to the extent allowed by tSize.

If, on entry, lpszDataSource contains the name of an available data source, chooseTable
will use that data source in determining the list of tables presented to the user. If there is no
current data source or lpszDataSource does not specify an available data source, the user

Chapter 4

56 Developing Applications, SQL Edition

will be allowed to select a data source and chooseTable will return the selected data
source name in lpszDataSource to the extent allowed by dsSize.

If, on entry, lpszDatabase contains the name of a valid database (for those platforms that
support multiple databases), chooseTable will initially select that database in displaying
the list of tables. chooseTable will return the name of the database from which the user
selects a table in lpszDatabase to the extent allowed by dbSize.

Related Functions

chooseDataSource, getDataSource, setDataSource, getMasterTableName,
setMasterTableName

Example

To allow the user to select a new data source and table for the report whose handle is hRpt,
and then make the selected data source current and use the selected table to replace the
master table :

{
 char dsbuf[100];
 char dbbuf[100];
 char tbuf[100];

 dsbuf[0] = 0;
 dbbuf[0] = 0;
 chooseTable (hRpt, (LPSTR)tbuf, 100, (LPSTR)dsbuf, 100,
 (LPSTR)dbbuf, 100);
 setDataSource (hRpt, (LPSTR)dsbuf);
 setMasterTableName (hRpt, (LPSTR)tbuf);
}

endReport
BOOL FAR PASCAL endReport (int hReport);

 hReport Report handle.
Return Value

The endReport function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Call the endReport function to signify that your application is finished with the report
associated with hReport. This enables endReport to clean up resources associated with
that report.

Related Functions

chooseReport, getRuntimeRecord, getNewReportHandle

Example

To inform the DLL that you are finished with the report whose handle is hRpt:
endReport (hRpt);

 Accessing the Viewer DLL

Developing Applications, SQL Edition 57

execRuntime
BOOL FAR PASCAL execRuntime (int hReport, BOOL bWait, int cmdShow,

LPINT lpiECode, LPLONG lplPageCount, LPSTR lpszEMsg, int emSize);

 hReport Report handle.
 bWait Synchronous operation flag.
 cmdShow Windows ShowWindow value.
 lpiECode Error-code buffer.
 lplPageCount Page-count buffer.
 lpszEMsg Error-message buffer.
 emSize Size of lpszEMsg buffer.
Return Value

The execRuntime function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
After using chooseReport, getRuntimeRecord, or getNewReportHandle to prepare a
report-information structure and using other functions provided by this API to modify the
structure’s contents, use execRuntime to run the report. If bWait is zero, execRuntime
will invoke RSWRUN to begin execution of the report and then return. If bWait is non-
zero, execRuntime will not return until the report execution is complete, in which case the
buffers provided by lpiECode, lpiPageCount, and lpszEMsg will be used to return status.

If bWait is non-zero, lpiECode will contain one of the following characters when
execRuntime returns:

N Successful execution of the requested report.

C The user canceled the report. lpszEMsg will contain “Report canceled.”

J The report structure identified by hReport contains inconsistent or incorrect
information. lpszEMsg will contain an error message describing the problem.

R The requested report began to execute, but failed to complete successfully.
lpszEMsg will contain an error message describing the problem.

Regardless of the value of bWait, any error condition resulting from the use of
execRuntime is available through getErrorInfo. In particular, in the event of a WinExec
error, getErrorInfo returns a message containing both the WinExec error code and
descriptive text.

If you have used setStatusEveryPage to request that the Viewer status be updated after
every page, lpiPageCount will contain the number of the last page completed in the report.
If the report did not complete successfully, lpiPageCount contains the number of the last
page completed before the error occurred. Use this number to restart an incomplete report
at the page where the error occurred. For example, if lpiPageCount is 14, you can use

Chapter 4

58 Developing Applications, SQL Edition

setBeginPage to restart the same report at page 15. (Use setEndPage to set the ending
page to 999999999.)

If bWait is zero, execRuntime leaves lpiECode, lpiPageCount, and lpiEMsg unchanged.
In this case, the Viewer will create a Viewer status file and the information provided by
lpiECode, lpiPageCount, and lpiEMsg are instead provided by the fields RO_ECODE,
RO_PAGES, and RO_EMSG. See Chapter 2 for details of the Viewer status file.

See Windows SDK documentation for the ShowWindow() function for information about
legal values of cmdShow.

Related Functions
chooseReport, getRuntimeRecord, getNewReportHandle, setBeginPage, setEndPage,
setStatusEveryPage

Example
To synchronously run the report whose handle is hRpt and test the results:

{
 int ecode;
 long pages;
 char emsg[200];
 int done = FALSE;

 while (!done)
 {
 // code to let user make changes to parameters, etc.
 execRuntime (hRpt, // report handle
 1, // synchronous
 SW_SHOW, // current size/position
 (LPINT)&ecode, // place for error code
 (LPLONG)&pages, // ... pages printed
 (LPSTR)emsg, // ... error message
 200); // size of emsg buffer
 switch (ecode)
 {
 case 'N': // success
 case 'C': // user canceled report
 done = 1; // either way, we're happy
 break;
 case 'J': // problem with parameters
 // error handling code
 break;
 case 'R': // problem running report
 // error handling code
 break;
 } // end switch
 } // end while
}

getBeginPage
BOOL FAR PASCAL getBeginPage (int hReport, LPLONG lplBeginPage);

 hReport Report handle.
 lplBeginPage Starting-page-number buffer.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 59

Return Value
The getBeginPage function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use getBeginPage to obtain the current value of the “starting page” parameter.
getBeginPage returns the current value of the starting page number in the form of a long
integer in the buffer pointed to by lplBeginPage. See setBeginPage for a discussion of this
parameter.

Related Functions
setBeginPage, getEndPage, setEndPage, execRuntime

Example
To get the current starting page for the report whose handle is hRpt:

{
 LONG begPage;

 getBeginPage (hRpt, (LPLONG)&begPage);
}

getCopies
BOOL FAR PASCAL getCopies (int hReport, LPINT lpiCopies);

 hReport Report handle.
 lpiCopies Number-of-copies buffer.
Return Value

The getCopies function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use getCopies to obtain the current value of the “number of copies” parameter for the
report specified by hReport. getCopies returns the number of copies in the form of an
integer in the buffer pointed to by lpiCopies. See setCopies for a discussion of this
parameter.

Related Functions

setCopies

Example

To get the current number of copies for the report whose handle is hRpt:
{
 int copies;

 getCopies (hRpt, (LPINT)&copies);
}

Chapter 4

60 Developing Applications, SQL Edition

getDataSource
BOOL FAR PASCAL getDataSource (int hReport, LPSTR lpszDataSource, int dsSize);

 hReport Report handle.
 lpszDataSource Data-source buffer.
 dsSize Size of lpszDataSource buffer.
Return Value

The getDataSource function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getDataSource to obtain the data source currently associated with the report specified
by hReport. getDataSource returns the data source name in the buffer pointed to by
lpszDataSource to the extent allowed by dsSize. See setDataSource for a discussion of
this parameter.

Related Functions

setDataSource, chooseDataSource

Example

To allow the user to select a new data source for the report whose handle is hRpt, showing
the current data source as the initial choice:

{

 char buf[100];

 getDataSource (hRpt, (LPSTR)buf, 100);
 chooseDataSource (hRpt, (LPSTR)buf, 100);
}

getDisplayErrors
BOOL FAR PASCAL getDisplayErrors (int hReport, BOOL FAR * lpbDispErr);

 hReport Report handle.
 lpbDispErr Display-errors-flag buffer.
Return Value

The getDisplayErrors function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getDisplayErrors to obtain the current value of the “display errors” parameter for the
report specified by hReport. getDisplayErrors returns the parameter in the form of a
boolean in the buffer pointed to by lpbDispErr. See setDisplayErrors for a discussion of
this parameter.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 61

Related Functions

setDisplayErrors

Example

To get the display-errors flag for the report whose handle is hRpt:
{
 BOOL bDispErrors;

 getDisplayErrors (hRpt, (BOOL FAR *)&bDispErrors);
}

getDisplayStatus
BOOL FAR PASCAL getDisplayStatus (int hReport, BOOL FAR * lpbDispStatus);

 hReport Report handle.
 lpbDispstatus Display-status-flag buffer.
Return Value

The getDisplayStatus function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getDisplayStatus to obtain the current value of the “display status” parameter for the
report specified by hReport. getDisplayStatus returns the parameter in the form of a
boolean in the buffer pointed to by lpbDispStatus. See setDisplayStatus for a discussion
of this parameter.

Related Functions

setDisplayStatus, getPreventEscape, setPreventEscape

Example

To get the display-status flag for the report whose handle is hRpt:
{
 BOOL dispStatus;

 getDisplayStatus (hRpt, (BOOL FAR *)&dispStatus);
}

getEndPage
BOOL FAR PASCAL getEndPage (int hReport, LPLONG lplEndPage);

 hReport Report handle.
 lplEndPage Ending-page-number buffer.
Return Value

The getEndPage function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Chapter 4

62 Developing Applications, SQL Edition

Description

Use getEndPage to obtain the current value of the “ending page” parameter for the report
specified by hReport. getEndPage returns the current value of the ending page number in
the form of a long integer in the buffer pointed to by lplEndPage. See setEndPage for a
discussion of this parameter.

Related Functions

setEndPage, getBeginPage, setBeginPage

Example

To get the current ending page for the report whose handle is hRpt:
{
 LONG endPage;

 getEndPage (hRpt, (LPLONG)&endPage);
}

getErrorInfo
BOOL FAR PASCAL getErrorInfo (int hReport, LPSTR lpszMsg, int mSize,

LPINT lpiCode);

 hReport Report handle.
 lpszMsg Error-text buffer.
 mSize Size of lpszMsg buffer.
 lpiCode Error-code buffer.
Return Value

The getErrorInfo function returns a non-zero value if it is returning error information in
lpszMsg and/or lpiCode. It returns zero if no error has occurred about which it can return
information.

Description

Use getErrorInfo to obtain information about the most recent error condition relating to
the report indicated by hReport. (If the error is a result of a call to chooseReport,
getRuntimeRecord, or getNewReportHandle, you will not have a valid report handle
and should use a handle of zero.) When other routines in this API indicate that an error has
occurred by returning a zero value, you can use getErrorInfo to get details. getErrorInfo
returns an error message in the buffer pointed to by lpszMsg to the extent allowed by
mSize, unless lpszMsg is NULL or mSize is negative or zero. getErrorInfo returns an error
code in the buffer pointed to by lpiCode unless lpiCode is NULL.

getErrorInfo returns one of the following values in lpiCode:

 C (Cancel) indicates that the user canceled out of a dialog presented by the
Viewer DLL.

 D (Diagnostic) indicates a miscellaneous error such as insufficient memory.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 63

 I (Iteration) indicates that there are no more values for the requested
getFirst... or getNext... function. This is not really an error condition. It
would be returned after the second and subsequent calls to
getNextSortField in a report containing two sort fields, for example.

 J (Job Control) indicates a problem with the Viewer Control File specified
as lpszControlFile to getRuntimeRecord.

 L (Library) indicates a problem with a report library being processed by the
Viewer DLL. It would be returned, for example, if chooseReport were
unable to read the report library specified as lpszLibName.

 S (Syntax) indicates a problem with the arguments passed to the routine
generating the error. This might indicate NULL passed for a required
pointer or a buffer size of zero, for example.

 V (Value) indicates that no value is available for the parameter whose value
you have requested.

The information returned by getErrorInfo will pertain to the most recent error resulting
from a call to the Viewer DLL involving the specified report handle. The DLL does not
clear its internal error status on entry to its routines. For this reason, you should test for
errors after each call, chain calls together in a single if statement with an error handler for
the compound statement, or use resetErrorInfo before any calls for which you are
interested in obtaining error status.

Since resetErrorInfo always returns non-zero, you can safely begin a chain of calls with a
call to resetErrorInfo, as in the following example.

Related Functions

resetErrorInfo

Example
if (resetErrorInfo() // reset error status
 && setLibrary (...)
 && setMasterTable (...)
 && setFilter (...)
 && setFilterUsage (...)
)
 execRuntime (hRpt, ...); // sets went ok; run report
else // error on one of the sets, check it out
{
 char emsg[200];
 int ecode;

 getErrorInfo ((LPSTR)emsg, 200, (LPINT)&ecode);
 // ecode will have an error code
 // emsg will have an error message, truncated to 200
 // bytes, if necessary
 // your code to do something with this error info
}

Chapter 4

64 Developing Applications, SQL Edition

getExportDest
BOOL FAR PASCAL getExportDest (int hReport, LPSTR lpszVal);

 hReport Report handle.
 lpszVal Export-destination-flag buffer.
Return Value

The getExportDest function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getExportDest to obtain the current value of the “export destination” parameter for
the report specified by hReport. See setExportDest for a discussion of this parameter.

Related Functions

setExportDest

Example

To get the current export destination for the report whose handle is hRpt:
{
 char dest[2];

 getExportDest (hRpt, (LPSTR)dest);
}

getFilter
BOOL FAR PASCAL getFilter (int hReport, LPSTR lpszFilter, int fSize);

 hReport Report handle.
 lpszFilter Filter buffer.
 fSize Size of lpszFilter buffer.
Return Value

The getFilter function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description
Use getFilter to obtain the current value of the “filter” parameter for the report specified
by hReport. getFilter returns the current filter (in the form of a valid calculated field
expression) in the buffer pointed to by lpszFilter, to the extent allowed by fSize. If
setFilter has not previously been used to override the filter saved with the report,
getFilter returns a logical expression equivalent to the filter defined via the Query dialog
in R&R or overridden in the Viewer Control File record if hReport was obtained via a call
to getRuntimeRecord. If setFilter has been called to override the filter saved with the
report, getFilter simply returns the value previously set. See setFilter for details of filter
expressions. See setFilterUsage for details of the interaction between values set by
setFilterUsage and setFilter.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 65

Related Functions
setFilter, getFilterUsage, setFilterUsage

Example
To get the current filter for the report whose handle is hRpt:

{
 char filter[2000];

 getFilter (hRpt, (LPSTR)filter, 2000);
}

getFilterUsage
BOOL FAR PASCAL getFilterUsage (int hReport, LPSTR lpszVal);

 hReport Report handle.
 lpszVal Filter-usage-flag buffer.
Return Value

The getFilterUsage function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getFilterUsage to obtain the current value of the “filter usage” parameter for the
report specified by hReport. getFilterUsage returns the current value in the form of a
single character in the buffer pointed to by lpszVal. See setFilterUsage for a discussion of
filter-usage values and the interaction between values set by setFilterUsage and setFilter.

Related Functions

setFilterUsage, getFilter, setFilter

Example

To get the current filter-usage flag for the report whose handle is hRpt:
{
 char filterUsage[2];

 getFilterUsage (hRpt, (LPSTR)filterUsage);
}

getFirstFieldName
BOOL FAR PASCAL getFirstFieldName (int hReport, LPSTR lpszFieldName,

int fnSize);

 hReport Report handle.
 lpszFieldName Fieldname buffer.
 fnSize Size of lpszFieldName buffer.

Chapter 4

66 Developing Applications, SQL Edition

Return Value

The getFirstFieldName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getFirstFieldName to get the first fieldname available for use in the report specified
by hReport. getFirstFieldName returns the fieldname with alias qualifier in the buffer
pointed to by lpszFieldName to the extent allowed by fnSize. Use getNextFieldName in a
loop to get the rest of the available fieldnames. See getErrorInfo for information about
how to detect end-of-list.

Related Functions

getNextFieldName

Example

To get the fieldnames available for the report whose handle is hRpt, and add them to the
combo box whose handle is hCombo:

int InitFieldCombo(HWND hCombo, int hRpt)
{
 char szField[80]; // buffer for field name
 int nFields = 1; // return count of fields

 // Extract field names from the report.
 if (getFirstFieldName(hRpt, szField, sizeof(szField)))
 {
 ComboBox_AddString(hCombo, szField);

 while (getNextFieldName(hRpt, szField, sizeof(szField)))
 {
 ComboBox_AddString(hCombo, szField);

 // This returns false if not an iterator error.
 if (!getError())
 return FALSE;
 nFields++;
 }
 }
 else return getError(); // Error handling routine.

 return nFields;
}

getFirstFilteredFieldName
BOOL FAR PASCAL getFirstFilteredFieldName (int hRepstf, LPSTR lpszFieldName,

 int fnSize, int filter);

 hReport Report handle.
 lpszFieldName Fieldname buffer.
 fnSize Size of lpszFieldName buffer.
 filter Filter ID.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 67

Return Value

The getFirstFilteredFieldName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getFirstFilteredFieldName to get the first fieldname available for use in the report
specified by hReport that is suitable for use in the context specified by filter.
getFirstFieldName returns the filename with alias qualifier in the buffer pointed to by
lpszFieldName to the extent allowed by fnSize. Use getNextFilteredFieldName in a loop
to get the rest of the available fieldnames suitable for use in the specified context. See
getErrorInfo for information about how to detect end-of-list.

The filter argument specifies the context to be used in deciding which available fields to
return. The valid values for filter, defined in rreport.h, are FILTER_ID_SORT and
FILTER_ID_GROUP, which return fields suitable for use as sort or group fields,
respectively.

Related Functions

getNextFilteredFieldName, getFirstFieldName, getNextFieldName

Example

See getFirstFieldName for an example of adding fieldnames to a combo box. To modify
that example to get suitable sort fields, simply change the function names from
getFirstFieldName and getNextFieldName to getFirstFilteredFieldName and
getNextFilterFieldName and add a new last argument to both of FILTER_ID_SORT.

getFirstGroupField
BOOL FAR PASCAL getFirstGroupField (int hReport, LPSTR lpszName, int nSize);

 hReport Report handle.
 lpszName Group-field-name buffer.
 nSize Size of lpszName buffer.
Return Value

The getFirstGroupField function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getFirstGroupField and getNextGroupField to obtain the current values of the
“group field” parameters in the report specified by hReport. getFirstGroupField returns
the name of the first group field in the buffer pointed to by lpszName, to the extent allowed
by nSize. Use getNextGroupField iteratively to get the names of the second through
eighth group fields. Whenever getFirstGroupField is called, the next call to
getNextGroupField will return the name of the second group field. See setGroupField

Chapter 4

68 Developing Applications, SQL Edition

for a discussion of the group field parameters. See getErrorInfo for information about
how to detect end-of-list.

Related Functions
getNextGroupField, setGroupField, getFirstSortField, getNextSortField, setSortField

Example
To get the names of the group fields for the report whose handle is hRpt:

{
 char *g[8];
 char g1[80], g2[80], g3[80], g4[80], g5[80], g6[80], g7[80], g8[80];
 int i;

 g[0] = g1; g[1] = g2; g[2] = g3; g[3] = g4;
 g[4] = g5; g[5] = g6; g[6] = g7; g[7] = g8;

 getFirstGroupField (hRpt, (LPSTR)g1, 80);
 for (i = 1; i < 8; i++)
 getNextGroupField (hRpt, (LPSTR)(g[i]), 80);
 }

getFirstJoinInfo
BOOL FAR PASCAL getFirstJoinInfo (int hReport, LPSTR lpszTable, int tSize,

LPSTR lpszAlias, int aSize);

 hReport Report handle.
 lpszTable Related-filename buffer.
 tSize Size of lpszTable buffer.
 lpszAlias Alias buffer.
 aSize Size of lpszAlias buffer.
Return Value

The getFirstJoinInfo function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getFirstJoinInfo to obtain information about the “first” related table in the report
specified by hReport. getFirstJoinInfo returns the related table’s name in the buffer
pointed to by lpszTable to the extent allowed by tSize and the alias of the related table in
the buffer pointed to by lpszAlias to the extent allowed by aSize. Use getNextJoinInfo in a
loop to obtain equivalent information about the rest of the related tables. See
getErrorInfo for information about how to detect end-of-list.

Related Functions

getNextJoinInfo, setJoinInfo, getMasterTable

 Accessing the Viewer DLL

Developing Applications, SQL Edition 69

Example

To get information about the first related table in the report whose handle is hRpt:
{
 char table[260];
 char alias[10];

 getFirstJoinInfo (hRpt, (LPSTR)table, 260, (LPSTR)alias, 10);
}

getFirstReplace
BOOL FAR PASCAL getFirstReplace (int hReport, LPSTR lpszReplace, int size);

 hReport Report handle.
 lpszReplace Replacement-string buffer.
 size Size of lpszReplace buffer.
Return Value

The getFirstReplace function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getFirstReplace to get the first replaceable portion of the SQL statement associated
with the User-SQL report specified by hReport. getFirstReplace returns the first
replaceable portion in the buffer pointed to by lpszReplace to the extent allowed by size.
Use getNextReplace in a loop to get the remaining replaceable portions of the SQL
statement. The replaceable portions of the User-SQL statement are surrounded by pairs of
angle brackets, as in

Select <<’firstname’, ’lastname’>> from students
where <<’firstname’ < ’lastname’>>

which has replaceable portions of <<’firstname’,’lastname’>> and
<<’firstname’ < ’lastname’>>. See getErrorInfo for information about how to detect
end-of-list.

Related Functions

getNextReplace, setReplace, setWhere

Example

To get information about the first replaceable portion of the SQL statement from the User-
SQL report whose handle is hRpt:

{
 char buf[500];

 getFirstReplace (hRpt, (LPSTR)buf, 500);
}

Chapter 4

70 Developing Applications, SQL Edition

getFirstSortField
BOOL FAR PASCAL getFirstSortField (int hReport, LPSTR lpszName, int nSize);
 hReport Report handle.
 lpszName Sort-field-name buffer.
 nSize Size of lpszName buffer.
Return Value

The getFirstSortField function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description
Use getFirstSortField and getNextSortField to obtain the current values of the “sort
field” parameters in the report specified by hReport. getFirstSortField returns the name
and direction of the first sort field in the buffer pointed to by lpszName, to the extent
allowed by nSize. Use getNextSortField iteratively to get the names and directions of the
second through eighth sort fields. Whenever getFirstSortField is called, the next call to
getNextSortField will return the name of the second sort field. See setSortField for a
discussion of the sort field parameters and a description of the syntax of lpszName. See
getErrorInfo for information about how to detect end-of-list.

Related Functions
getNextSortField, setSortField, getFirstGroupField, getNextGroupField,
setGroupField

Example
To get the names of the sort fields for the report whose handle is hRpt:

{
 char *s[8];
 char s1[80], s2[80], s3[80], s4[80], s5[80], s6[80], s7[80], s8[80];
 int i;

 s[0] = s1; s[1] = s2; s[2] = s3; s[3] = s4;
 s[4] = s5; s[5] = s6; s[6] = s7; s[7] = s8;

 getFirstSortField (hRpt, (LPSTR)s1, 80);
 for (i = 1; i < 8; i++)
 getNextSortField (hRpt, (LPSTR)(s[i]), 80);
}

getFirstUserParam
BOOL FAR PASCAL getFirstUserParam (int hReport, LPSTR lpszName, int nSize,

LPSTR lpszValue, int vSize);
 hReport Report handle.
 lpszName Parameter-name buffer.
 nSize Size of lpszName buffer.
 lpszValue Parameter-value buffer.
 vSize Size of lpszValue buffer.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 71

Return Value

The getFirstUserParam function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getFirstUserParam to get the name and current value, if any, of the first user
parameter for the report specified by hReport. The name of the user parameter is returned
in the buffer pointed to by lpszName to the extent allowed by nSize. The current value, if
any, is returned in the buffer pointed to by lpszValue to the extent allowed by vSize. Use
getNextUserParam in a loop to get the names and values of the other user parameters.
Use setUserParam to give a user parameter a value. See setUserParam for a further
discussion of user parameters. See getErrorInfo for information about how to detect end-
of-list.

Related Functions

getNextUserParam, setUserParam

Example

To get the name and value for the first user parameter for the report whose handle is hRpt:
{
 char param[40], value[100];

 getFirstUserParam (hRpt, (LPSTR)param, 40, (LPSTR)value, 100);
}

getLibrary
BOOL FAR PASCAL getLibrary (int hReport, LPSTR lpszName, int size);

 hReport Report handle.
 lpszName Library-name buffer.
 size Size of lpszName buffer.
Return Value

The getLibrary function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use getLibrary to obtain the current value of the report-library parameter for the report
specified by hReport. getLibrary returns the library name in the buffer pointed to by
lpszName to the extent allowed by size. See setLibrary for a discussion of this parameter.

Related Functions
setLibrary

Chapter 4

72 Developing Applications, SQL Edition

Example
To get the name of the report library for the report whose handle is hRpt:

{
 char lib[80];

 getLibrary (hRpt, (LPSTR)lib, 80);
}

getMasterTableName
BOOL FAR PASCAL getMasterTableName (int hReport, LPSTR lpszPath, int pSize);

 hReport Report handle.
 lpszPath Filename buffer.
 pSize Size of lpszPath buffer.
Return Value

The getMasterTableName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getMasterTableName to obtain the current master table name for the report specified
by hReport. The name is returned in the buffer pointed to by lpszPath to the extent allowed
by pSize.

Related Functions

setMasterTableName

Example

To get the name of the master table for the report whose handle is hRpt:
{
 char table[80];

 getMasterTableName (hRpt, (LPSTR)table, 80);
}

getMemoName
BOOL FAR PASCAL getMemoName (int hReport, LPSTR lpszPath, int pSize);

 hReport Report handle.
 lpszPath Filename buffer.
 pSize Size of lpszPath buffer.
Return Value

The getMemoName function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 73

Description

Use getMemoName to obtain the current ASCII memo filename for the report specified
by hReport. The name is returned in the buffer pointed to by lpszPath to the extent allowed
by pSize.

Related Functions

setMemoName

Example

To get the name of the ASCII memo file for the report whose handle is hRpt:
{
 char memo[80];

 getMemoName (hRpt, (LPSTR)memo, 80);
}

getNewReportHandle
int FAR PASCAL getNewReportHandle (LPSTR lpszAppName);

 lpszAppName Name of calling application.
Return Value

The getNewReportHandle function returns a report-information handle if there are no
errors. A return value of zero indicates an error. To obtain more information about the
error use getErrorInfo.

Description
Use getNewReportHandle to obtain the handle of an empty report-information structure.
The lpszAppName argument identifies the calling application. This routine is most
commonly used (instead of chooseReport or getRuntimeRecord) when the user will be
selecting a report. See setReportPick for a discussion of selection of reports by the user.

Related Functions
chooseReport, getRuntimeRecord, setReportPick

Example
For a quick way to run a user-selected report without modification:

hRpt = getNewReportHandle((LPSTR)"Application Name"); // get a handle
setReportPick (hRpt, 'R'); // let user pick report
execRuntime (hRpt, 0, SW_SHOW, NULL, NULL, NULL, 0); // run it

getNextFieldName
BOOL FAR PASCAL getNextFieldName (int hReport, LPSTR lpszFieldName, int fnSize);

 hReport Report handle.
 lpszFieldName Fieldname buffer.
 fnSize Size of lpszFieldName buffer.

Chapter 4

74 Developing Applications, SQL Edition

Return Value

The getNextFieldName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getNextFieldName in a loop to get the fieldnames available for use in the report
specified by hReport, after getting the first available fieldname with getFirstFieldName.
getNextFieldName returns the fieldname with alias qualifier in the buffer pointed to by
lpszFieldName to the extent allowed by fnSize. See getErrorInfo for information about
how to detect end-of-list.

Related Functions

getFirstFieldName

Example

See getFirstFieldName for an example of getNextFieldName.

getNextFilteredFieldName
BOOL FAR PASCAL getNextFilteredFieldName (int hRepstf, LPSTR lpszFieldName,

int fnSize, int filter);

 hReport Report handle.
 lpszFieldName Fieldname buffer.
 fnSize Size of lpszFieldName buffer.
 filter Filter ID.
Return Value

The getNextFilteredFieldName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getNextFilteredFieldName in a loop to get the fieldnames available for use in the
report specified by hReport suitable for use in the context specified by filter, after getting
the first such fieldname with getFirstFieldName. getNextFieldName returns the filename
with alias qualifier in the buffer pointed to by lpszFieldName to the extent allowed by
fnSize. See getErrorInfo for information about how to detect end-of-list.

The filter argument specifies the context to be used in deciding which available fields to
return. The valid values for filter, defined in rreport.h, are FILTER_ID_SORT and
FILTER_ID_GROUP, which return fields suitable for use as sort or group fields,
respectively.

Related Functions

getFirstFilteredFieldName, getFirstFieldName, getNextFieldName

 Accessing the Viewer DLL

Developing Applications, SQL Edition 75

Example

See getFirstFieldName for an example of adding fieldnames to a combo box. To modify
that example to get suitable sort fields, simply change the function names from
getFirstFieldName and getNextFieldName to getFirstFilteredFieldName and
getNextFilterFieldName and add a new last argument of FILTER_ID_SORT to both.

getNextGroupField
BOOL FAR PASCAL getNextGroupField (int hReport, LPSTR lpszName, int nSize);

 hReport Report handle.
 lpszName Group-field-name buffer.
 nSize Size of lpszName buffer.
Return Value

The getNextGroupField function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getFirstGroupField and getNextGroupField to obtain the current values of the
“group field” parameters in the report specified by hReport. getFirstGroupField returns
the name of the first group field in the buffer pointed to by lpszName, to the extent allowed
by nSize. Use getNextGroupField iteratively to get the names of the second through
eighth group fields. Whenever getFirstGroupField is called, the next call to
getNextGroupField will return the name of the second group field. See getErrorInfo for
information about how to detect end-of-list.

Related Functions

getFirstGroupField, setGroupField, getFirstSortField, getNextSortField, setSortField

Example

See getFirstGroupField for an example of getNextGroupField.

getNextJoinInfo
BOOL FAR PASCAL getNextJoinInfo (int hReport, LPSTR lpszTable, int tSize,

LPSTR lpszAlias, int aSize);

 hReport Report handle.
 lpszTable Related-table buffer.
 tSize Size of lpszTable buffer.
 lpszAlias Alias buffer.
 aSize Size of lpszAlias buffer.

Chapter 4

76 Developing Applications, SQL Edition

Return Value

The getNextJoinInfo function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getNextJoinInfo in a loop to obtain information about all related tables but the “first”
in the report specified by hReport. getNextJoinInfo returns the related table’s name in the
buffer pointed to by lpszTable to the extent allowed by tSize, and the alias of the related
table in the buffer pointed to by lpszAlias to the extent allowed by aSize. Use
getFirstJoinInfo to obtain equivalent information about the “first” of the related tables.
See getErrorInfo for information about how to detect end-of-list.

Related Functions

getFirstJoinInfo, setJoinInfo, getMasterTable

Example

To get information about the next related table in the report whose handle is hRpt:
{
 char table[260];
 char alias[10];

 getNextJoinInfo (hRpt, (LPSTR)table, 260, (LPSTR)alias, 10);
}

This would typically be used in a loop, following a call to getFirstJoinInfo.

getNextReplace
BOOL FAR PASCAL getNextReplace (int hReport, LPSTR lpszReplace, int size);

 hReport Report handle.
 lpszReplace Replacement-string buffer.
 size Size of lpszReplace buffer.
Return Value

The getNextReplace function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getNextReplace in a loop to get all replaceable portions but the first of the SQL
statement associated with the User-SQL report specified by hReport. getNextReplace
returns the next replaceable portion in the buffer pointed to by lpszReplace to the extent
allowed by size. Use getFirstReplace to get the first replaceable portion. The replaceable
portions of the User-SQL statement are surrounded by pairs of angle brackets, as in

Select <<’firstname’, ’lastname’>> from students
where <<’firstname’ < ’lastname’>>

 Accessing the Viewer DLL

Developing Applications, SQL Edition 77

which has replaceable portions of <<’firstname’,’lastname’>>
and <<’firstname’ < ’lastname’>>. See getErrorInfo for information about how to
detect end-of-list.

Related Functions
getFirstReplace, setReplace

Example
To get information about the next replaceable portion of the SQL statement from the User-
SQL report whose handle is hRpt:

{
 char buf[500];

 getNextReplace (hRpt, (LPSTR)buf, 500);
}

This would typically be used in a loop, following a call to getFirstReplace.

getNextSortField
BOOL FAR PASCAL getNextSortField (int hReport, LPSTR lpszName, int nSize);

 hReport Report handle.
 lpszName Sort-field-name buffer.
 nSize Size of lpszName buffer.
Return Value

The getNextSortField function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use getFirstSortField and getNextSortField to obtain the current values of the “sort
field” parameters in the report specified by hReport. getFirstSort Field returns the name
and direction of the first sort field in the buffer pointed to by lpszName, to the extent
allowed by nSize. Use getNextSortField iteratively to get the names and directions of the
second through eighth sort fields. Whenever getFirstSortField is called, the next call to
getNextSortField will return the name of the second sort field. See setSortField for a
discussion of the sort field parameters and a description of the syntax of lpszName. See
getErrorInfo for information about how to detect end-of-list.

Related Functions
getFirstSortField, setSortField, getFirstGroupField, getNextGroupField,
setGroupField

Example
See getFirstSortField for an example of getNextSortField.

Chapter 4

78 Developing Applications, SQL Edition

getNextUserParam
BOOL FAR PASCAL getNextUserParam (int hReport, LPSTR lpszName, int nSize,

LPSTR lpszValue, int vSize);

 hReport Report handle.
 lpszName Parameter-name buffer.
 nSize Size of lpszName buffer.
 lpszValue Parameter-value buffer.
 vSize Size of lpszValue buffer.
Return Value

The getNextUserParam function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description
Use getNextUserParam in a loop to get the names and current values, if any, of all but the
first user parameter for the report specified by hReport. The name of the user parameter is
returned in the buffer pointed to by lpszName to the extent allowed by nSize. The current
value, if any, is returned in the buffer pointed to by lpszValue to the extent allowed by
vSize. Use getFirstUserParam to get the name and value of the first user parameter. Use
setUserParam to give a user parameter a value. See setUserParam for a further
discussion of user parameters. See getErrorInfo for information about how to detect end-
of-list.

Related Functions
getFirstUserParam, setUserParam

Example
To get the name and value for the next user parameter for the report whose handle is hRpt:

{
 char param[40], value[100];

 getNextUserParam (hRpt, (LPSTR)param, 40, (LPSTR)value, 100);
}

getOutputDest
BOOL FAR PASCAL getOutputDest (int hReport, LPSTR lpszDest, int dSize);
 hReport Report handle.
 lpszDest Output-destination buffer.
 dsize Size of lpszDest buffer.
Return Value

The getOutputDest function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use getOutputDest to obtain the current value of the “output destination” parameter for
the report specified by hReport. getOutputDest returns the value as a single character in

 Accessing the Viewer DLL

Developing Applications, SQL Edition 79

the buffer specified by lpszDest to the exten allowed by dSize. See setOutputDest for a
discussion of this parameter.

Related Functions
setOutputDest, getOutputFile, setOutputFile

Example
To get the current output-destination parameter for the report whose handle is hRpt:

{
 char dest[2];

 getOutputDest (hRpt, (LPSTR)dest);
}

getOutputFile
BOOL FAR PASCAL getOutputFile (int hReport, LPSTR lpszName, int size);

 hReport Report handle.
 lpszName Output-filename buffer.
 size Size of lpszName buffer.
Return Value

The getOutputFile function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getOutputFile to obtain the current value of the “output file” parameter for the report
specified by hReport. getOutputFile returns the value in the buffer specified by lpszName
to the extent allowed by size. See setOutputFile for a discussion of this parameter.

Related Functions

setOutputFile, getOutputDest, setOutputDest

Example

To get the current output file for the report whose handle is hRpt:
{
 char outfile[80];

 getOutputFile (hRpt, (LPSTR)outfile, 80);
}

getPreventEscape
BOOL FAR PASCAL getPreventEscape (int hReport, BOOL FAR * lpbNoEsc);

 hReport Report handle.
 lpbNoEsc Prevent-escape-flag buffer.

Chapter 4

80 Developing Applications, SQL Edition

Return Value

The getPreventEscape function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use getPreventEscape to obtain the current setting of the “prevent escape” flag for the
report specified by hReport. getPreventEscape returns this flag value in the buffer
pointed to by lpbNoEsc. See setPreventEscape for a discussion of this flag.

Related Functions

setPreventEscape

Example

To get the prevent-escape flag for the report whose handle is hRpt:
{
 BOOL noEscape;

 getPreventEscape (hRpt, (BOOL FAR *)&noEscape);
}

getPrinter
BOOL FAR PASCAL getPrinter (int hReport, LPSTR lpszPrinter, int size);

 hReport Report handle.
 lpszPrinter Printer-name buffer.
 size Size of lpszPrinter buffer.
Return Value

The getPrinter function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use getPrinter to obtain the current value of the “printer” parameter for the report
specified by hReport. getPrinter returns the value in the buffer pointed to by lpszPrinter
to the extent allowed by size. See setPrinter for a discussion of this parameter.

Related Functions

setPrinter, getPrinterPort, setPrinterPort

Example

To get the current printer parameter for the report whose handle is hRpt:
{
 char printer[100];

 getPrinter (hRpt, (LPSTR)printer, 100);
}

 Accessing the Viewer DLL

Developing Applications, SQL Edition 81

getPrinterPort
BOOL FAR PASCAL getPrinterPort (int hReport, LPSTR lpszPort, int size);

 hReport Report handle.
 lpszPort Printer-port-name buffer.
 size Size of lpszPort buffer.
Return Value

The getPrinterPort function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getPrinterPort to obtain the current value of the “printer port” parameter for the
report specified by hReport. getPrinterPort returns the value in the buffer pointed to by
lpszPort to the extent allowed by size. See setPrinterPort for a discussion of this
parameter.

Related Functions

setPrinterPort, getPrinter, setPrinter

Example

To get the current printer-port parameter for the report whose handle is hRpt:
{
 char port[10];

 getPrinterPort (hRpt, (LPSTR)port, 10);
}

getReportPick
BOOL FAR PASCAL getReportPick (int hReport, LPSTR lpszPickFlag);

 hReport Report handle.
 lpszPickFlag Report-selection-flag buffer.
Return Value

The getReportPick function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getReportPick to obtain the current value of the report-selection parameter for the
report specified by hReport. getReportPick returns the current value of this parameter in
the form of a single character in the buffer pointed to by lpszPickFlag. See setReportPick
for a discussion of this flag.

Related Functions

setReportPick

Chapter 4

82 Developing Applications, SQL Edition

Example

To get the report-selection parameter for the report whose handle is hRpt:
{
 char pick[2];

 getReportPick (hRpt, (LPSTR)pick);
}

getRuntimeRecord
int FAR PASCAL getRuntimeRecord (LPSTR lpszAppName, LPSTR lpszControlFile,

LPSTR lpszUserName, LPSTR lpszPassword, LPSTR lpszDataSource, int dSize) ;

 lpszAppName Name of calling application.
 lpszControlFile Pointer to ASCII Viewer control filename.
 lpszUserName Name of user, for connecting to data source.
 lpszPassword Password, for connecting to data source.
 lpszDataSource Name of data source or buffer in which to return data source name.
 dSize Size of lpszDataSource buffer.
Return Value

The getRuntimeRecord function returns a report-information handle if there are no
errors. A return value of zero indicates an error. To obtain more information about the
error use getErrorInfo with a report handle of zero.

Description
Use getRuntimeRecord to begin processing a report based on information in the ASCII
Viewer Control File whose name is pointed to by lpszControlFile. The control file pointed
to by lpszControlFile must contain a non-empty value for RI_REPORT and may also
contain a non-empty value for RI_LIBRARY. If both are non-empty, RI_LIBRARY is
treated as the name of a report library and RI_REPORT is treated as the name of a report
within that library. If only RI_REPORT is non-empty, it is treated as the name of a report
file. The lpszAppName argument identifies the calling application.

 The lpszUserName and lpszPassword arguments are optional and can be used to specify a
username and password, respectively, for use when connecting to the data source to be
used with the report specified by lpszRepName or chosen by the user.

The lpszDataSource argument is optional and can be used to specify a data source
override for the specified report. This can be useful if the specified report either contains
no data source information, or if the data source in use when the report was saved no
longer exists or does not exist on the current system. The lpszDataSource argument can
be:

• The name of a data source, in which case the data source saved with the report
(if any) is ignored in favor of the specified data source.

• A pointer to an empty buffer of size dSize, in which case the data source saved
with the report will be used, if possible, or if the saved report has no data source

 Accessing the Viewer DLL

Developing Applications, SQL Edition 83

or its data source is invalid, the user will be presented with a "choose data
source" dialog. The data source's name will be returned in lpszDataSource to the
extent allowed by dSize.

• NULL, in which case the data source saved with the report will be used, if
possible, or if not possible one of the errors: "No data source specified in report"
or "Cannot find data source 'name'" will be returned.The handle returned by
getRuntimeRecord is used as input to most other functions contained within
this API.

Related Functions
chooseReport, getNewReportHandle, writeRuntimeRecord

Example
To use the report specified in the control file c:\libs\rrunin.txt with a username of "Jack
Paar", a password of "Tonight", and a data source of "Entertainers":

{
 int hRpt;

 hRpt = getRuntimeRecord ((LPSTR)"Application Name",
 (LPSTR)"c:\\libs\\rrunin.txt", (LPSTR)"Jack Paar",
 (LPSTR)"Tonight", (LPSTR)"Entertainers", 13);
}

getStatusEveryPage
BOOL FAR PASCAL getStatusEveryPage (int hReport, BOOL FAR * lpbStatus);

 hReport Report handle.
 lpbStatus Status-frequency buffer.
Return Value

The getStatusEveryPage function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description
Use getStatusEveryPage to obtain the current value of the “status every page” parameter
for the report specified by hReport. getStatusEveryPage returns the current value of this
parameter in the form of a boolean in the buffer pointed to by lpbStatus. See
setStatusEveryPage for a further description of this parameter.

Related Functions
setStatusEveryPage

Example
To get the status-every-page flag for the report whose handle is hRpt:

{
 BOOL pageStatus;

 getStatusEveryPage (hRpt, (BOOL FAR *)&pageStatus);
}

Chapter 4

84 Developing Applications, SQL Edition

getTestPattern
BOOL FAR PASCAL getTestPattern (int hReport, BOOL FAR * lpbTest);

 hReport Report handle.
 lpbTest Test-pattern-flag buffer.
Return Value

The getTestPattern function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getTestPattern to obtain the current value of the “test pattern” parameter for the
report specified by hReport. getTestPattern returns the current value of this parameter in
the form of a boolean in the buffer pointed to by lpbTest. See setTestPattern for a further
description of this parameter.

Related Functions

setTestPattern

Example

To get the test-pattern flag for the report whose handle is hRpt:
{
 BOOL test;

 getTestPattern (hRpt, (BOOL FAR *)&test);
}

getWinTitle
BOOL FAR PASCAL getWinTitle (int hReport, LPSTR lpszTitle, int size);

 hReport Report handle.
 lpszTitle Report-title buffer.
 size Size of lpszTitle buffer.
Return Value

The getWinTitle function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use getWinTitle to obtain the current value of the “report title” parameter for the report
specified by hReport. getWinTitle returns the title in the buffer pointed to by lpszTitle to
the extent allowed by size. See setWinTitle for a discussion of the report title parameter.

Related Functions

setWinTitle

 Accessing the Viewer DLL

Developing Applications, SQL Edition 85

Example

To get the current report-title string for the report whose handle is hRpt:
{
 char title[100];

 getWinTitle (hRpt, (LPSTR)title, 100);
}

resetErrorInfo
BOOL FAR PASCAL resetErrorInfo (int hreport);

Return Value

The resetErrorInfo function always returns non-zero.

Description

Use resetErrorInfo to force the Viewer DLL to reset its error information variables for
the report indicated by hreport. The error message and code returned by getErrorInfo
always pertain to calls made since the last call to resetErrorInfo for the specified report.

Related Functions

getErrorInfo

Example

To reset the error information:
resetErrorInfo();

setBeginPage
BOOL FAR PASCAL setBeginPage (int hReport, LONG lBeginPage);

 hReport Report handle.
 lBeginPage Starting page number.
Return Value

The setBeginPage function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setBeginPage to replace the current value of the “starting page” parameter for the
report specified by hReport with the value specified by lBeginPage. The “starting page”
parameter can be used to override the starting page number saved with the report. One
application for this parameter is for restarting a canceled report without reprinting the parts
that were already printed. See execRuntime for a discussion of how to restart a partially
printed report. Be sure that the value specified with setBeginPage is no larger than the one
specified with setEndPage.

Chapter 4

86 Developing Applications, SQL Edition

Related Functions

getBeginPage, setEndPage, getEndPage, setStatusEveryPage, execRuntime

Example

To print pages 10 to 15 of the report whose handle is hRpt:
setBeginPage (hRpt, 10L);
setEndPage (hRpt, 15L);

setCopies
BOOL FAR PASCAL setCopies (int hReport, int copies);

 hReport Report handle.
 copies Number of copies.
Return Value

The setCopies function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description
Use setCopies to replace the current value of the “number of copies” parameter for the
report specified by hReport with the value specified by copies. The specified value must
be between 0 and 999, inclusive. A value of 0 causes R&R to revert to the number of
copies saved with the report.

Related Functions
getCopies

Example
To set the number of copies for the report whose handle is hRpt to 2:

setCopies (hRpt, 2);

setDatabase
BOOL FAR PASCAL setDatabase (int hReport, LPSTR lpszDatabase);

 hReport Report handle.
 lpszDatabase Default database.
Return Value

The setDatabase function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setDataDatabase to replace the default database saved with the report specified by
hReport with the value specified by lpszDatabase. R&R may use the default database in
trying to locate tables used in the report specified by hReport.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 87

Related Functions

none

Example

To specify the use of accounting as the default database for the report whose handle is
hRpt:

setDataDatabase (hRpt, (LPSTR)"accounting");

setDataDir
BOOL FAR PASCAL setDataDir (int hReport, LPSTR lpszDir);

 hReport Report handle.
 lpszDir Default data directory.
Return Value

The setDataDir function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description
Use setDataDir to replace the default data directory specified in RSW.INI with the value
specified by lpszDir, for the report specified by hReport. R&R may use the default data
directory in trying to locate tables used in the report specified by hReport.

Related Functions
setImageDir, setLibraryDir

Example
To specify the use of c:\rrdata as the default data directory for the report whose handle is
hRpt:

setDataDir (hRpt, (LPSTR)"c:\\rrdata");

setDataSource
BOOL FAR PASCAL setDataSource (int hReport, LPSTR lpszDataSource);

 hReport Report handle.
 lpszDataSource Data-source buffer.
Return Value

The setDataSource function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setDataSource to change the ODBC “data source” parameter for the report specified
by hReport.

Chapter 4

88 Developing Applications, SQL Edition

Related Functions

getDataSource, chooseDataSource

Example

To set the data source for the report whose handle is hRpt to “SQLServer QE – R&R basic
config”:

setDataSource (hRpt, (LPSTR)"SQLServer QE – R&R basic config");

setDisplayErrors
BOOL FAR PASCAL setDisplayErrors (int hReport, BOOL bDisperr);

 hReport Report handle.
 bDisperr Display-errors flag.
Return Value

The setDisplayErrors function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setDisplayErrors to replace the current value of the “display errors” flag for the
report specified by hReport with the value specified by bDisperr. If the “display errors”
flag is non-zero, error messages generated by R&R will be displayed on the screen, in
addition to being returned to the calling application; otherwise, error messages are only
returned to the calling application. Error messages are returned to the calling application
via the lpszEMsg buffer supplied to execRuntime or via the RO_EMSG field in the
Viewer Status File, depending on the value of bWait passed to execRuntime. By default,
error messages are not displayed on the screen.

Related Functions

getDisplayErrors, execRuntime

Example

To specify that, for the report whose handle is hRpt, Viewer should display errors as well
as return them:

setDisplayErrors (hRpt, 1);

setDisplayStatus
BOOL FAR PASCAL setDisplayStatus (int hReport, BOOL bDispStatus);

 hReport Report handle.
 bDispstatus Display-status flag.
Return Value

The setDisplayStatus function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 89

Description

Use setDisplayStatus to replace the current value of the “display status” flag for the report
specified by hReport with the value specified by bDispStatus. If the “display status” flag is
non-zero, R&R will display a status window while it is generating the report; otherwise it
will display an icon while it is running. By default, R&R will not display status. If “display
status” is non-zero and the “prevent escape” flag is zero, the status window will contain a
Cancel button that will allow the user to terminate a report in progress. Note that pressing
Cancel will not interrupt execution of the Viewer during processing of a SELECT statement
by a server.

Related Functions

getDisplayStatus, setPreventEscape, getPreventEscape

Example

To specify that, for the report whose handle is hRpt, Viewer should display a status
window, and that the window should include a Cancel button:

setDisplayStatus (hRpt, 1); // display a status window...
setPreventEscape (hRpt, 0); // ... with a Cancel button

setEndPage
BOOL FAR PASCAL setEndPage (int hReport, LONG lEndPage);

 hReport Report handle.
 lEndPage Ending page number.
Return Value

The setEndPage function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setEndPage to replace the current value of the “ending page” parameter for the report
specified by hReport with the value specified by lEndPage. The “ending page” parameter
can be used to override the ending page number saved with the report. Be sure that the
value specified by setEndPage is at least as large as the value specified by setBeginPage.

Related Functions

getEndPage, setBeginPage, getBeginPage

Example

To print pages 10 to 15 of the report whose handle is hRpt:
setBeginPage (hRpt, 10L);
setEndPage (hRpt, 15L);

Chapter 4

90 Developing Applications, SQL Edition

setExportDest
BOOL FAR PASCAL setExportDest (int hReport, char cVal);

 hReport Report handle.
 cVal Export-destination flag.
Return Value

The setExportDest function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setExportDest to replace the current value of the “export destination” parameter for
the report specified by hReport with the value specified by cVal. The export destination is
used to specify how the results of an Excel Chart or Excel PivotTable export are to be
presented. Valid values for this parameter are:

 D (Display) means to present the results of the Chart or PivotTable export
on the display from within Excel.

 F (File) means to save the Chart or PivotTable export to the file specified by
setOutputFile.

 P (Printer) means to print the Chart or PivotTable to Excel’s default printer.

Related Functions

getExportDest, setOutputFile

Example

To indicate that the cross-tab or chart report whose handle is hRpt should be displayed by
Excel:

setExportDest (hRpt, ’D’);

setFilter
BOOL FAR PASCAL setFilter (int hReport, LPSTR lpszFilter);

 hReport Report handle.
 lpszFilter Filter expression.
Return Value

The setFilter function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use setFilter to specify a filter expression, lpszFilter, that may be used instead of the
filter, if any, saved with the report specified by hReport. R&R will use this filter
expression only if you also call setFilterUsage with a value of O. See setFilterUsage for
details of this behavior. A filter expression must use the same syntax as that of a calculated

 Accessing the Viewer DLL

Developing Applications, SQL Edition 91

field expression that returns a logical value. The expression can include any database,
calculated, or total fields available in the report, along with built-in function references,
constants, and UDF references. When R&R uses the expression specified via setFilter, it
will include only those records where the value of the expression is true. The maximum
size of a filter expression is 1024.

Related Functions

setFilterUsage, getFilter, getFilterUsage

Example

To limit the data of the report whose handle is hRpt to those records where CITY is
Boston or Westborough and STATE is MA:

setFilter(hRpt, (LPSTR)"STATE='MA' AND
 (CITY='Boston' OR CITY='Westborough')");
setFilterUsage (hRpt, 'O'); // override saved filter

Note the use of parentheses in the filter expression. Without the parentheses, the filter
would accept a CITY value of Westborough even if the STATE were not MA, since R&R
evaluates AND before OR.

setFilterUsage
BOOL FAR PASCAL setFilterUsage (int hReport, char cVal);

 hReport Report handle.
 cVal Filter-usage flag.
Return Value

The setFilterUsage function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setFilterUsage to set the “filter usage” parameter for the report specified by hReport
to the value specified by cVal. Valid values for this parameter are:

 S (Saved) means to run the report using the filter saved with it, if any. R&R
will ignore any expression specified via setFilter and run the report exactly
as it was saved.

 E (Entire) means to ignore any filter saved in the report or specified via
setFilter.

 O (Override) means to override the saved filter, if any, with the expression
specified via setFilter.

 ? (Question mark) means to allow the user to enter a filter or edit the saved
filter at report execution. If no filter was saved with the report, the Insert
Condition dialog displays, as shown in Figure 4.1

Chapter 4

92 Developing Applications, SQL Edition

Figure 4.1 Insert Condition Dialog Box

 If a filter was saved with the report, the Filter dialog box displays, as shown
in Figure 4.2

Figure 4.2 Filter Dialog Box

 When the filter-usage flag is a question mark (?), the value specified via
setFilter is always ignored.

Note that the filter-usage parameter has no impact on the value specified by
setWhere. If you have used setWhere to specify a WHERE clause, it will always be
evaluated by your SQL software directly; any filter will be applied to the result.

Related Functions
setFilter, getFilter, getFilterUsage, setWhere

Example
To allow the user to specify a filter at report execution for the report whose handle is hRpt:

setFilterUsage (hRpt, '?');

setGroupField
BOOL FAR PASCAL setGroupField (int hReport, LPSTR lpszName, int groupNum);
 hReport Report handle.
 lpszName Group-field name.
 groupNum Group number.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 93

Return Value

The setGroupField function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setGroupField to replace an existing group field or add a new one to the report
specified by hReport. Pass the group field number to be added or replaced in groupNum
and its name in lpszName. You must replace all group fields from group field 1 through the
last group field you wish to replace. For example, if you only wish to replace group field 2,
you must call setGroupField twice, once with a groupNum of 1 and once with a
groupNum of 2. To obtain the current group field parameters, use getFirstGroupField
and getNextGroupField.

Related Functions

getFirstGroupField, getNextGroupField, setSortField, getFirstSortField,
getNextSortField

Example

To replace the second group field with CITY, while leaving the first group field
unchanged for the report whose handle is hRpt:

{
 char buf[80];

 getFirstGroupField (hRpt, (LPSTR)buf, 80);
 setGroupField (hRpt, (LPSTR)buf, 1);
 setGroupField (hRpt, (LPSTR)"CITY", 2);
}

setImageDir
BOOL FAR PASCAL setImageDir (int hReport, LPSTR lpszDir);

 hReport Report handle.
 lpszDir Default image directory.
Return Value

The setImageDir function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use setImageDir to replace the default image directory specified in RSW.INI with the
value specified by lpszDir, for the report specified by hReport. Viewer may use the default
image directory in trying to locate images used in the report specified via hReport.

Related Functions
setDataDir, setLibraryDir

Chapter 4

94 Developing Applications, SQL Edition

Example
To specify the use of c:\rrdata as the default image directory for the report whose handle is
hRpt:

setImageDir (hRpt, (LPSTR)"c:\\rrdata");

setJoinInfo
BOOL FAR PASCAL setJoinInfo (int hReport, LPSTR lpszTable, LPSTR lpszAlias,

int aliasNum);
 hReport Report handle.
 lpszTable Related table name.
 lpszAlias Alias.
 aliasNum Join-override number.
Return Value

The setJoinInfo function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description
Use setJoinInfo to replace a related table in the report specified by hReport. Use
lpszTable to specify the new related table name and lpszAlias to specify the alias of the
related table being replaced. Use an aliasNum between 1 and 99 to identify which alias
parameter is to be used for the replacement.

Related Functions
getFirstJoinInfo, getNextJoinInfo, setMasterTable, getMasterTable

Example
Suppose the report specified by hReport includes a related table fy94, whose alias is fy. If
you wish to use setJoinInfo to replace fy94 with fy95, you might call setJoinInfo as
follows:

setJoinInfo (hReport, // report handle
 (LPSTR)"fy95", // table name
 (LPSTR)"fy", // alias
 1); // number

which uses an aliasNum of 1 to replace fy94 data with fy95 data. Note that the lpszAlias
value must match the alias of the related table as saved with the report. The aliasNum
argument has no significance except to give an ID to the join override specification. If you
later realized that you should have used fy93 data you would again call setJoinInfo using
the same aliasNum value of 1. To override the parameters of a different join without losing
the fy override, use an aliasNum of 2 for the second override.

setLibrary
BOOL FAR PASCAL setLibrary (int hReport, LPSTR lpszName);
 hReport Report handle.
 lpszName Library-name buffer.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 95

Return Value
The setLibrary function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description
Use setLibrary to replace the current value of the report-library parameter for the report
specified by hReport to the value specified by lpszName. It is not necessary to call
setLibrary after obtaining a report handle with chooseReport or getRuntimeRecord
since both of these routines imply the selection of a report library. This routine is primarily
for use with getNewReportHandle and setReportPick.

If lpszName does not include a path, the Viewer looks for the library in the directory
specified by setLibraryDir. If setLibraryDir has not been called, the Viewer looks in the
default library directory specified in RSW.INI. If no default is specified in the INI file
either, the Viewer looks for the library in the current directory.

Related Functions
getLibrary, getNewReportHandle, setReportPick, setLibraryDir

Example
To specify the library c:\libs\acctrpts for a report-information handle obtained via a call to
getNewReportHandle, allowing the user to pick a single report to run:

{
 char emsg[256];
 int ecode;
 long pgct;
 int hRpt = getNewReportHandle();

 if (hRpt)
 {

 if (setLibrary (hRpt, (LPSTR)"c:\\libs\\acctrpts"));

 {
 setReportPick (hRpt, 'R');
 execRuntime (hRpt, 1, SW_SHOW, (LPINT)&ecode,
 (LPLONG)&pgct, (LPSTR)emsg, 256);
 }
 else ... // error handling
 }
 else ... // error handling
}

setLibraryDir
BOOL FAR PASCAL setLibraryDir (int hReport, LPSTR lpszDir);

 hReport Report handle.
 lpszDir Default library directory.
Return Value

The setLibraryDir function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Chapter 4

96 Developing Applications, SQL Edition

Description

Use setLibraryDir to replace the default library directory specified in RSW.INI with the
value specified by lpszDir, for the report specified by hReport. Viewer may use the default
library directory in trying to locate the library specified via setLibrary or chooseReport,
or implicitly via getRuntimeRecord.

Related Functions

setDataDir, setImageDir, setLibrary, chooseReport, getRuntimeRecord

Example

To specify the use of c:\rrdata as the default library directory for the report whose handle is
hRpt:

setLibraryDir (hRpt, (LPSTR)"c:\\rrdata");

setMasterTableName
BOOL FAR PASCAL setMasterTableName (int hReport, LPSTR lpszTable);

 hReport Report handle.
 lpszTable Name buffer.
Return Value

The setMasterTableName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setMasterTableName to replace the master table saved with the report specified by
hReport with the master table specified by lpszTable. The columns in the master table
specified by lpszTable must match in name, number, and type those in the original master
table.

Related Functions

getMasterTableName, chooseTable

Example

To specify the use of the table, EMPLOY, for the report whose handle is hRpt:
setMasterTable (hRpt, (LPSTR)"employ");

setMemoName
BOOL FAR PASCAL setMemoName (int hReport, LPSTR lpszPath);

 hReport Report handle.
 lpszPath Pathname buffer.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 97

Return Value

The setMemoName function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setMemoName to replace the ASCII memo file used in the report specified by
hReport with the file specified by lpszPath.

 If lpszPath specifies both a directory and a table name, this directory is the
only directory searched and this file name is the only file the Viewer
searches for.

 If lpszPath specifies a directory without a file name, the Viewer searches the
specified directory for the ASCII memo file name saved with the report.

 If lpszPath specifies a file name without a directory, the Viewer searches for
a file with the specified name in the directory of the ASCII memo file saved
with the report, then in the default data directory specified via setDataDir
or in RSW.INI. If no default is specified via setDataDir, the Viewer
searches for the specified table in the current directory.

Related Functions

getMemoName

Example

To specify the use of the ASCII memo file C:\DATA\LETTER.TXT for the report whose
handle is hRpt:

setMemoName (hRpt, (LPSTR)"c:\\data\\letter.txt");

setOutputDest
BOOL FAR PASCAL setOutputDest (int hReport, char cDest);

 hReport Report handle.
 cDest Output destination.
Return Value

The setOutputDest function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setOutputDest to replace the current value of the “output destination” parameter for
the report specified by hReport. If you don’t call setOutputDest, Viewer will print to the
destination saved with the report (or to the printer specified via setPrinter function). This
parameter can have one of these values: D, A, T, P, Excel Chart, Excel PivotTable,
CSV, MSWORD, RTF, W, X, or a question mark (?).

Chapter 4

98 Developing Applications, SQL Edition

 A value of D specifies that the report be sent to the display, allowing the
user to preview the report before printing it. After previewing the report, the
user can select Print on the Preview screen to send the report to the printer
saved with the report or specified via the setPrinter function. Note that if
the value of cDest is D and a filename has been specified via setOutputFile,
the report will be output to the file specified via setOutputFile when the
user selects Print in Preview.

 A value of A or T specifies that the report be sent to the text file named via
the setOutputFile function. The report will be exported as a text file
without printer codes.

 A value of P specifies that the report be sent to the printer saved with the
report or specified via setPrinter, even if the report’s saved destination is a
file.

 A value of Excel Chart or Excel PivotTable specifies that the report be
exported to an Excel Chart or PivotTable, respectively. You can use this in
conjunction with setExportDest to control the export destination (display,
file, or printer).

 A value of CSV, MSWORD, or RTF specifies that the report be exported
to a text data file, Word Merge file, or Rich Text Format file, respectively,
using either the saved file name or the file name specified via
setOutputFile.

 A value of W specifies that the report be exported to a worksheet file whose
name is specified via setOutputFile.

 A value of X specifies that the report be exported to an Xbase file whose
name is specified via setOutputFile.

 A value of question mark (?) allows the user to select the print destination
(screen or printer) at report execution. When the value of cDest is a question
mark, the user will see the dialog box shown in Figure 4.3. If a title has been
specified via setWinTitle, the title bar will contain that title; otherwise, the
title bar will contain the report name.

Figure 4.3 Print Destination Dialog Box

 Accessing the Viewer DLL

Developing Applications, SQL Edition 99

 The user can select Screen to preview the report, Printer to print it, or
Export to export it to one of the available export types (Excel PivotTable,
Excel Chart, Rich Text Format, Text, Text Data, Word Merge, Xbase, or
Worksheet). If the user selects Cancel, the report will not run and the
“Canceled” message will be returned as report status.

If you call neither setOutputDest nor setOutputFile, the Viewer outputs the report to the
printer saved with the report or specified via setPrinter. If you call setOutputFile but not
setOutputDest, the Viewer outputs the report to the specified file with printer codes for
the printer saved with the report or specified via setPrinter.

Related Functions

getOutputDest, setOutputFile, getOutputFile, setPrinter, getPrinter

Example

To specify the display as the output destination for the report whose handle is hRpt:
setOutputDest (hRpt, 'D');

setOutputFile
BOOL FAR PASCAL setOutputFile (int hReport, LPSTR lpszName);

 hReport Report handle.
 lpszName Output filename.
Return Value

The setOutputFile function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setOutputFile to replace the current value of the “output file” parameter for the report
specified by hReport with the value specified by lpszName. Use it to save report output as
a file for printing later, or use it in conjunction with setOutputDest to export a report to a
file. When this parameter is specified and setOutputDest has not been called or has been
used to specify a value of D or question mark (?), the report will be output to a file with
printer codes. When this parameter is specified and setOutputDest has been used to
specify a value of A, the report will be output as a text file without printer codes. To send
the report directly to the saved destination, simply don’t call setOutputFile or
setOutputDest.

The name of the output file can include a path. For example, to send a report to a text file
INVOICE.TXT in the C:\PROJECT\TEXT subdirectory, specify the following value for
the lpszName parameter:

C:\PROJECT\TEXT\INVOICE.TXT

If lpszName does not include a path, the Viewer places the file in the current directory.

Chapter 4

100 Developing Applications, SQL Edition

Related Functions

getOutputFile, setOutputDest, getOutputDest

Example

To specify C:\TEMP\REPORT.TXT as the output file for the report whose handle is hRpt:
setOutputFile (hRpt, (LPSTR)"c:\\temp\\report.txt");

setPassword
BOOL FAR PASCAL setPassword (int hReport, LPSTR lpszPassword);

 hReport Report handle.
 lpszPassword Password buffer.
Return Value

The setPassword function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use the setPassword function to specify the password to be used in connecting to the data
source associated with the report specified by hReport, either as saved in the report library
or as overridden by a call to setDataSource. A password is only required for certain data
sources. The string pointed to by lpszPassword will be used as the password. If
setPassword is not called to specify a password and the data source requires one, the user
will be prompted for a user name and password when the Viewer retrieves the report.

Related Functions

setUserName

Example

To specify "swordfish" as the password and "qawagstaff" as the username for the report
whose handle is hRpt:

setPassword (hRpt, (LPSTR)"swordfish");
setUserName (hRpt, (LPSTR)"qawagstaff");

setPreventEscape
BOOL FAR PASCAL setPreventEscape (int hReport, BOOL bNoEsc);

 hReport Report handle.
 bNoEsc Prevent-escape flag.
Return Value

The setPreventEscape function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 101

Description

Use setPreventEscape to specify whether or not the user should be able to terminate the
report specified by hReport. If bNoEsc is true, the user will not be able to terminate the
report while Viewer is generating it. A value of zero means that a Cancel button will
appear in the status window, enabling the user to pause or cancel the report. Note that a
status window will appear only if setDisplayStatus has been called with a non-zero value.
The default value of the “prevent escape” flag is zero. If the user cancels the report, the
error-code value returned via lpiECode, from execRuntime or as RO_ECODE in the
Viewer status file will be C.

Related Functions

getPreventEscape, setDisplayStatus, getDisplayStatus, execRuntime

Example

To specify that, for the report whose handle is hRpt, Viewer should display a status
window and that the window should include a Cancel button:

setDisplayStatus (hRpt, 1); // display a status window...
setPreventEscape (hRpt, 0); // ... with a Cancel button

setPrinter
BOOL FAR PASCAL setPrinter (int hReport, LPSTR lpszPrinter);

 hReport Report handle.
 lpszPrinter Printer name.
Return Value

The setPrinter function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use setPrinter to replace the current value of the “printer” parameter for the report
specified by hReport with the printer name specified by lpszPrinter.

This parameter can have one of two values:

 The name of an available Windows printer (for example, “HP LaserJet
Series III”). The value is case insensitive (that is, you can enter it in upper,
lower, or mixed case).

 The question mark (?) value, to allow the user to select a printer. When the
lpszPrinter value is a question mark, the Print dialog will display, as shown
in Figure 4.4.

 The word “Default” to force the Viewer to use the current default Windows
printer. Use this setting only if you are sure that the default printer is
compatible with the layout of your Viewer report(s)

Chapter 4

102 Developing Applications, SQL Edition

Figure 4.4 Print Dialog Box

The Printers applet (accessible from the Windows Control Panel) controls which printers
are listed in the Print dialog box. Viewer initially selects the printer saved with the report.
The user can select another printer and port as necessary.

Related Functions
getPrinter, setPrinterPort, getPrinterPort, setOutputDest, getOutputDest

Example
To allow the user to select a printer interactively in Viewer for the report whose handle is
hRpt:

setPrinter (hRpt, (LPSTR)"?");

setPrinterPort
BOOL FAR PASCAL setPrinterPort (int hReport, LPSTR lpszPort);

 hReport Report handle.
 lpszPort Printer-port name.
Return Value

The setPrinterPort function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use setPrinterPort to replace the value of the “printer port” parameter for the report
specified by hReport with the value specified by lpszPort. Enter a value such as “LPT1:”
to override the current printer port value. Note that the colon is required.

You can also use the question mark (?) value or enter the word “Default” for this
parameter. When the value of lpszPort is a question mark, the user will see the Print dialog
box shown in Figure 4.4. When the value of lpszPort is “Default,” Viewer will use the
default Windows printer port. (See the description of the setPrinter function.)

 Accessing the Viewer DLL

Developing Applications, SQL Edition 103

Related Functions
getPrinterPort, setPrinter, getPrinter, setOutputDest, getOutputDest

Example
To allow the user to select a printer interactively in Viewer for the report whose handle is
hRpt:

setPrinterPort (hRpt, (LPSTR)"?");

setReplace
BOOL FAR PASCAL setReplace (int hReport, LPSTR lpszReplace);

 hReport Report handle.
 lpszReplace Replacement string.
Return Value

The setReplace function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description
Use setReplace to replace a portion of the SELECT, EXEC, or DEFINE REPORTVIEW
statement associated with the User-SQL report specified by hReport with the text pointed
to by lpszReplace.

When you enter a SELECT, EXEC, or DEFINE REPORTVIEW statement in interactive R&R,
you must enclose in double angle brackets (<< >>) any portion that you may want to
replace at report execution. Using setReplace, you can provide substitute values for the
delimited portions, leave them intact, or specify that you want them to be removed. You
can delimit any text in the statement except the initial commands SELECT, EXEC, and
DEFINE REPORTVIEW, which cannot be replaced. The initial SELECT, EXEC, or DEFINE
REPORTVIEW must be followed by a space. Note also that nesting parameters is not allowed
— do not insert delimiters within delimiters.

The syntax of lpszReplace is a comma-separated list of parameters enclosed in double
angle brackets:

<<param1>>,<<param2>>,<<param3>>,...<<paramN>>

The number of parameters in the lpszReplace value must match exactly the number of
delimited portions of the SELECT, EXEC, or DEFINE REPORTVIEW statement saved with the
report. Everything between delimiters will be substituted exactly as entered in place of the
corresponding delimited text in the original statement. Space outside delimiters is ignored.

Beware of replacing the columns returned by the SELECT statement saved with the report;
columns specified by the SELECT as modified by setReplace should correspond in name,
number, and data type to those specified by the saved SELECT. Otherwise, Viewer will
report an error when it cannot find columns referred to in the saved report. If you want to
select differently named columns at report execution, assign column names either directly
in the SELECT (if this is supported by your database platform) or using the DEFINE

Chapter 4

104 Developing Applications, SQL Edition

REPORTVIEW syntax. The column names should be the same in the original statement and
the lpszReplace string.

Note that setReplace does not apply to Auto-SQL reports (reports created by selecting
master and related tables). To insert a WHERE clause in the SQL statement for an Auto-
SQL report, use the setWhere function.

Related Functions

getFirstReplace, getNextReplace, setWhere

Example

If the User-SQL report whose handle is hRpt contains the following SELECT statement to
select rows for a report:

SELECT *
FROM customers
WHERE state=’MA’
ORDER BY last_name

You can delimit any parts of the statement except the initial word SELECT. For example,
you might delimit the FROM, WHERE, and ORDER BY clauses, as shown in this example:

SELECT *
<<FROM customers>>
<<WHERE state=’MA’>>
<<ORDER BY cust_name>>

To provide substitutions for the three delimited sections of the SELECT statement, you
might call setReplace as follows:

setReplace (hRpt, (LPSTR)"<<FROM customers,sales>>,
 <<WHERE customers.cust_no=sales.cust_no AND state=’CA’>>,
 <<ORDER BY sale_date>>");

To leave any delimited portion intact, use a comma as a place holder. To replace the
WHERE clause and leave the FROM and ORDER BY clauses intact, you might call setReplace
as follows:

setReplace (hRpt, (LPSTR)",<<WHERE state=’CA’>>,");

When you do not want a delimited portion of the statement to be applied, use empty
delimiters (<< >>) to specify a null replacement value. For example, this call to
setReplace specifies that the FROM clause of the original SELECT should be left intact, and
the WHERE and ORDER BY clauses should be ignored:

setReplace (hRpt, (LPSTR)",<<>>,<<>>");

setReportPick
BOOL FAR PASCAL setReportPick (int hReport, char cPickFlag);

 hReport Report handle.
 cPickFlag Report-selection-flag buffer.
Return Value

The setReportPick function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 105

Description

Use setReportPick to replace the current value of the report-selection flag for the report
specified by hReport to the value specified by cPickFlag. If the report-selection flag is set
to R, the Viewer will prompt the user to select a report from the current report library. If
the flag is set to ?, the Viewer will prompt the user to select a succession of reports from
the current report library. The current report library is the library specified explicitly via
setLibrary, or implicitly via chooseReport or getRuntimeRecord.

Related Functions

getReportPick, chooseReport, getRuntimeRecord, setLibrary, getLibrary

Example

To allow the user to select a report interactively in Viewer for the report whose handle is
hRpt:

setReportPick (hRpt, 'R');

setSortField
BOOL FAR PASCAL setSortField (int hReport, LPSTR lpszName, int sortNum);

 hReport Report handle.
 lpszName Sort-field-name buffer.
 sortNum Sort-field number.
Return Value

The setSortField function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setSortField to replace an existing sort field or add a new one to the report specified
by hReport. Pass the sort field number to be added or replaced in sortNum and its value in
lpszName. The lpszName argument begins with a + or - to indicate ascending or
descending, respectively, followed by the name of the sort field. You must replace all sort
fields from sort field 1 through the last sort field you wish to replace. For example, if you
only wish to replace sort field 2, you must call setSortField twice, once with a sortNum of
1 and once with a sortNum of 2. To obtain the current sort field parameters, use
getFirstSortField and getNextSortField.

Related Functions

getFirstSortField, getNextSortField, setGroupField, getFirstGroupField,
getNextGroupField

Chapter 4

106 Developing Applications, SQL Edition

Example

To replace the second sort field with CITY in ascending order, while leaving the first sort
field unchanged, for the report whose handle is hRpt:

{
 char buf[80];

 getFirstGroupField (hRpt, (LPSTR)buf, 80);
 setSortField (hRpt, (LPSTR)buf, 1);
 setSortField (hRpt, (LPSTR)"+CITY", 2);
}

setStatusEveryPage
BOOL FAR PASCAL setStatusEveryPage (int hReport, BOOL bStatus);

 hReport Report handle.
 bStatus Status-frequency value.
Return Value

The setStatusEveryPage function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setStatusEveryPage to specify a value for the “status every page” parameter for the
report specified by hReport. This parameter is meaningful only when execRuntime is to
be called with a value of zero for bWait, in which case Viewer will generate a status file. If
bWait is non-zero, no Viewer status file is generated and status is returned to the calling
application via execRuntime. If bStatus is non-zero and Viewer is generating a status file,
the file will be updated after each page of the report; otherwise, it will updated only at the
end of the report. When bStatus is non-zero, you can use the value of RO_PAGES in the
status file to restart a report at the point where abnormal termination occurred. See
execRuntime for more information on restarting reports.

Related Functions

getStatusEveryPage

Example

To specify that Viewer status should be written after every page of the report whose handle
is hRpt:

setStatusEveryPage (hRpt, 1);

setStatusFileName
BOOL FAR PASCAL setStatusFileName (int hReport, LPSTR lpszPath);

 hReport Report handle.
 lpszPath Status file name

 Accessing the Viewer DLL

Developing Applications, SQL Edition 107

Return Value

The setStatusFileName function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setStatusFileName to specify a status file name for the report specified by hReport. A
status file is created only if you call execRuntime with a bWait parameter of 0. You can
distinguish Viewer status tables by using the setStatusFileName to specify the directory in
which the file will be created and/or to specify the complete status file name.

To specify the directory in which a status table should be created, specify a full path and
name. If you specify a path without a table name, the Viewer executable will create a file
named RSWRUN.OUT in the specified directory. If you specify a filename without a path,
the specified file will be created in the current directory.

Example

To cause the Viewer executable to create a status file named C:\TEMP\RUNSTATS.OUT
for the report specified by hRpt:

setStatusFileName (hRpt, ”c:\\temp\\runstats.out”);

setSuppressTitle
BOOL FAR PASCAL setSuppressTitle (int hReport, BOOL bValue);

 hReport Report handle.
 bValue Suppress-title flag.
Return Value

The setSuppressTitle function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use setSuppressTitle to set the “suppress title and summary areas” flag for the report
specified by hReport. If the value of bValue is non-zero, Viewer will not output Title and
Summary areas for reports which contain no records; otherwise Viewer always outputs
Title and Summary areas.

Example
To suppress the printing of Title and Summary areas if the report specified by hRpt
contains no records:

setSuppressTitle (hRpt, 1);

setTestPattern
BOOL FAR PASCAL setTestPattern (int hReport, BOOL bTest);

 hReport Report handle.
 bTest Test-pattern flag.

Chapter 4

108 Developing Applications, SQL Edition

Return Value

The setTestPattern function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setTestPattern to set the “test pattern” flag for the report specified by hReport. If the
value of bTest is non-zero, Viewer will display a dialog allowing the user to print a test
pattern before printing the report. The dialog will contain OK, Cancel, and Print buttons.
The user can select OK to print a test pattern as many times as necessary to align forms in
the printer, and then select Print to print the report. A test pattern includes only page
header, record, and page footer lines.

Related Functions

getTestPattern

Example

To specify that the user should be permitted to print one or more test patterns before
printing the report whose handle is hRpt:

setTestPattern (hRpt, 1);

setUserName
BOOL FAR PASCAL setUserName (int hReport, LPSTR lpszName);

 hReport Report handle.
 lpszName User-name buffer.
Return Value

The setUserName function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use the setUserName function to specify the user name to be used in connecting to the
data source associated with the report specified by hReport, either as saved in the report
library or as overridden by a call to setDataSource. A user name is required only for
certain data sources. The string pointed to by lpszName will be used as the user name. If
setUserName is not called to specify a user name and the data source requires one, the
user will be prompted for a user name and password when the Viewer retrieves the report.

Related Functions
setPassword

Example
To specify "swordfish" as the password and "qawagstaff" as the username for the report
whose handle is hRpt:

setPassword (hRpt, (LPSTR)"swordfish");
setUserName (hRpt, (LPSTR)"qawagstaff");

 Accessing the Viewer DLL

Developing Applications, SQL Edition 109

setUserParam
BOOL FAR PASCAL SetUserParam (int hReport, LPSTR lpszName, LPSTR lpszValue);

 hReport Report handle.
 lpszName Parameter-name buffer.
 lpszValue Parameter-value buffer.
Return Value

The setUserParam function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setUserParam to give the value specified by lpszValue to the user parameter whose
name is specified by lpszName for the report specified by hReport.

When the Viewer is called directly using a Control File, a user parameter is a control-file
field that is not defined by Viewer. The value of a user parameter is obtained within a
report via the R&R function RIPARAM. When the Viewer is called via the Viewer DLL,
the DLL deduces the names of the user parameters by searching all calculated fields for
uses of the RIPARAM function. The order in which getFirstUserParam and
getNextUserParam return user parameters is not significant. A given user parameter will
only have a current value if setUserParam has previously been called for that parameter.
All user parameters must be of data type character. You can use conversion functions such
as CTOD() and VAL() to convert to other data types for use in calculations.

You can control some features of the layout and content of reports by prompting users to
enter values for parameters, then passing the values to reports. Typically, you prompt the
user for a text string or other data item that is not stored in the database. For example, you
might prompt the user for his or her name and use the name in a “Report Author” field in
the page footer or title.

Follow these general steps to pass parameters to reports using setUserParam.

1. Define calculations in your report using the RIPARAM() function.

2. Obtain values for use in the calculations in either of two ways:

 Create your own menus or prompts within your application.
 Enter a question mark as the value of the control table field.

3. If your application has obtained values for user parameters, pass the values via calls
to setUserParam; if you wish Viewer to obtain values for you, call setUserParam
for each such parameter with a value of questions mark (?).

The following sections describe each step in detail.

Chapter 4

110 Developing Applications, SQL Edition

Define RIPARAM Calculations
In your report, define calculations that obtain user-supplied data via the RIPARAM()
function. The RIPARAM() function takes a user parameter name as its argument and
returns the parameter’s value as a string.

For example, in a general ledger application, you might define a user parameter named
CONAME for the company name, then prompt the user to enter a company name. To use
the company name on the report, create a calculated field in Report Designer whose
expression is:

 RIPARAM("CONAME")

You can place the calculated field wherever you want the company name to appear on the
report.

Although this example uses an RIPARAM() calculated field to provide user input as text
in the report, you can use such fields to perform many different functions in a report. For
example, you might prompt the user for a value for a DISCOUNT field. In the calculated
field on the report, you can convert the user-entered character data to numeric using a
calculated field expression such as:

 ORDERTOT * VAL(RIPARAM("DISCOUNT"))

Prompting for User Input
You can get user input in two ways:

 Supply a menu or prompt in your application that leads the user to supply a
value. Pass this value to the Viewer DLL via setUserParam.

 Enter a question mark (?) value for any user-defined field. Whenever a user-
defined field contains a question mark, the user will be prompted to enter a
value.

Using the Question Mark Field Value
The simplest way to get user input for reports is to use a question mark (?) as the value for
a user parameter. Optionally, the value can also include the text you want to appear as a
prompt. For example, if you want to prompt the user for his or her name, you might define
an AUTHOR user parameter and give it the value "?Enter your name:". As a result, the
user will see the dialog box shown in Figure 4.5.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 111

Figure 4.5 Viewer Dialog Box with Prompt

The size and shape of this dialog box is the same for all user-defined fields. The title bar
contains the title set with setWinTitle. If setWinTitle has not been called, the Viewer uses
the report name. If the user selects the Cancel button, the report will not run and the
Viewer will write the “Canceled” message to the status file.

If your control table field contains a question mark only and no text string, the Viewer
displays the dialog box shown in Figure 4.5 with the prompt “Enter value for (USER
PARAMETER)”, as in “Enter value for AUTHOR”.

Passing Parameter Values to the Viewer DLL
After obtaining values for user parameters, the final step is to pass those values to the
Viewer DLL so they become available for use in RIPARAM() calculations. Use
setUserParam to specify values for user parameters.

Related Functions

getFirstUserParam, getNextUserParam

setWhere
BOOL FAR PASCAL setWhere (int hReport, LPSTR lpszWhere);

 hReport Report handle.
 lpszWhere Where-clause value.
Return Value

The setWhere function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use setWhere to specify a WHERE clause, pointed to by lpszWhere, for insertion in the
SQL statement of the Auto-SQL report specified by hReport. setWhere has no effect on a
User-SQL report. Use setReplace to modify the SELECT statement of a User-SQL report.

If you or your users are proficient in SQL, you may want to use this function instead of
setFilter and setFilterUsage to select records. Since the WHERE clause is evaluated
directly by the SQL software, using setWhere can improve performance and enable you to
make use of any WHERE clause supported by your SQL software.

Chapter 4

112 Developing Applications, SQL Edition

The WHERE clause specified with this function always affects the report, regardless of
whether a filter was saved with the report. If you have also used setFilter and
setFilterUsage to select records, the effect of lpszWhere is as follows:

 If setFilterUsage specifies S for “Saved”, both the filter saved with the
report and the lpszWhere clause are used to select records.

 If setFilterUsage specifies O for “Override”, both the filter expression
specified via setFilter and the lpszWhere clause are used to select records.

 If setFilterUsage specifies E for “Entire,” only the lpszWhere clause is used
to select records.

 If setFilterUsage specifies a question mark (?) to allow the user to enter a
filter interactively, both the user’s filter expression and the lpszWhere clause
are used to select records.

Related Functions

setFilter, setFilterUsage, setReplace, getFirstReplace, getNextReplace

Example

To specify that the report whose handle is hRpt should be run with its saved filter and with
the additional clause, “where STATE is MA”:

setFilterUsage (hRpt, 'S');
setWhere (hRpt, (LPSTR)"STATE='MA'");

Note that it is not necessary to know what the saved filter is. This sample will further
restrict the set of records to those from the state of Massachusetts.

setWinBorderStyle
BOOL FAR PASCAL setWinBorderStyle (int hReport, int style);

 hReport Report handle.
 style Preview window border style.
Return Value

The setWinBorderStyle function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setWinBorderStyle to specify the type of border for the preview window for the
report specified by hReport. The valid values for style are:

 If style is 1, the preview window will be fixed size with a standard border.
 If style is 2, the user will be able to change the size of the preview window.

Related Functions

setWinControlBox, setWinHeight, setWinLeft, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

 Accessing the Viewer DLL

Developing Applications, SQL Edition 113

Example

To specify that the preview window for the report whose handle is hRpt should have a
single-line border and a fixed size of 400 pixels wide and 300 pixels high:

setWinBorderStyle (hRpt, 1);
setWinWidth (hRpt, 400);
setWinHeight (hRpt, 300);

setWinControlBox
BOOL FAR PASCAL setWinControlBox (int hReport, BOOL bControlBox);

 hReport Report handle.
 bControlBox Preview window control box flag.
Return Value

The setWinControlBox function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setWinControlBox to specify whether the preview window is to have a control box in
the upper-left corner for the report specified by hReport. If bControlBox is non-zero, the
preview window will have a control box.

Related Functions

setWinBorderStyle, setWinHeight, setWinLeft, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should have a
control box, and a maximize button, but no minimize button:

setWinControlBox (hRpt, 1);
setWinMaxButton (hRpt, 1);
setWinMinButton (hRpt, 0);

setWinHeight
BOOL FAR PASCAL setWinHeight (int hReport, int height);

 hReport Report handle.
 height Preview window height.
Return Value

The setWinHeight function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use setWinHeight to specify the height in pixels of the preview window for the report
specified by hReport.

Chapter 4

114 Developing Applications, SQL Edition

Related Functions
setWinBorderStyle, setWinControlBox, setWinLeft, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example
To specify that the preview window for the report whose handle is hRpt should have a
single-line border and a fixed size of 400 pixels wide and 300 pixels high:

setWinBorderStyle (hRpt, 1);
setWinWidth (hRpt, 400);
setWinHeight (hRpt, 300);

setWinLeft
BOOL FAR PASCAL setWinLeft (int hReport, int left);

 hReport Report handle.
 left Preview window left-edge position
Return Value

The setWinLeft function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use setWinLeft to specify the position of the left edge of the preview window for the
report specified by hReport. left specifies how far, in pixels, from the left edge of the
screen the left edge of the preview window is to be.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinMaxButton,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should begin 50
pixels down and 40 pixels to the right of the upper-left corner of the screen:

setWinTop (hRpt, 50);
setWinLeft (hRpt, 40);

setWinMaxButton
BOOL FAR PASCAL setWinMaxButton (int hReport, BOOL bMaxButton);

 hReport Report handle.
 bMaxButton Preview window maximize-button flag.
Return Value

The setWinMaxButton function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

 Accessing the Viewer DLL

Developing Applications, SQL Edition 115

Description

Use setWinMaxButton to specify whether the preview window is to have a maximize
button. If bMaxButton is non-zero the preview window will have a maximize button.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMinButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should have a
control box, and a maximize button, but no minimize button:

setWinControlBox (hRpt, 1);
setWinMaxButton (hRpt, 1);
setWinMinButton (hRpt, 0);

setWinMinButton
BOOL FAR PASCAL setWinMinButton (int hReport, BOOL bMinButton);

 hReport Report handle.
 bMinButton Preview window minimize-button flag.
Return Value

The setWinMinButton function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use setWinMinButton to specify whether the preview window is to have a minimize
button. If bMinButton is non-zero the preview window will have a minimize button.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMaxButton, setWinTitle, setWinTop, setWinWidth

Example

To specify that the preview window for the report whose handle is hRpt should have a
control box, and a maximize button, but no minimize button:

setWinControlBox (hRpt, 1);
setWinMaxButton (hRpt, 1);
setWinMinButton (hRpt, 0);

setWinTitle
BOOL FAR PASCAL setWinTitle (int hReport, LPSTR lpszTitle);

 hReport Report handle.
 lpszTitle Report title.

Chapter 4

116 Developing Applications, SQL Edition

Return Value
The setWinTitle function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description
Use setWinTitle to set the value of the “report title” parameter for the report specified by
hReport to the text specified by lpszTitle. The report title is displayed in the following
places:

 The title bar of the Preview window;
 The Print Status window (if setStatusEveryPage is called with a non-zero

bStatus value.);
 Below the Viewer icon (if setStatusEveryPage is called with a bStatus

value of zero.);
 The title bar of the dialog boxes that display if setPrinter or setPrinterPort

is called with an lpszPrinter value of question mark.

If this field is blank, the Viewer will use the name of the report as the window title.

Related Functions
getWinTitle, setStatusEveryPage, setPrinter

Example
To specify that the preview window for the report whose handle is hRpt should have a title
of “on the desktop of Rufus T. Firefly”:

setWinTitle (hRpt, (LPSTR)"on the desktop of Rufus T. Firefly");

setWinTop
BOOL FAR PASCAL setWinTop (int hReport, int top);

 hReport Report handle.
 top Preview window top-edge position.
Return Value

The setWinTop function returns zero if an error occurs. To obtain more information about
the error use getErrorInfo.

Description

Use setWinTop to specify the position of the top edge of the preview window for the
report specified by hReport. top specifies how far, in pixels, from the top edge of the
screen the top edge of the preview window is to be.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMaxButton, setWinMinButton, setWinTitle, setWinWidth

 Accessing the Viewer DLL

Developing Applications, SQL Edition 117

Example

To specify that the preview window for the report whose handle is hRpt should begin 50
pixels down and 40 pixels to the right of the upper-left corner of the screen:

setWinTop (hRpt, 50);
setWinLeft (hRpt, 40);

setWinWidth
BOOL FAR PASCAL setWinWidth (int hReport, int width);

 hReport Report handle.
 width Preview window width.
Return Value

The setWinWidth function returns zero if an error occurs. To obtain more information
about the error use getErrorInfo.

Description

Use setWinWidth to specify the width, in pixels, of the preview window for the report
specified by hReport.

Related Functions

setWinBorderStyle, setWinControlBox, setWinHeight, setWinLeft,
setWinMaxButton, setWinMinButton, setWinTitle, setWinTop

Example

To specify that the preview window for the report whose handle is hRpt should have a
single-line border and a fixed size of 400 pixels wide and 300 pixels high:

setWinBorderStyle (hRpt, 1);
setWinWidth (hRpt, 400);
setWinHeight (hRpt, 300);

writeRuntimeRecord
BOOL FAR PASCAL writeRuntimeRecord (int hReport, LPSTR lpszControlFile);

 hReport Report handle.
 lpszControlFile Job-control-filename buffer.
Return Value

The writeRuntimeRecord function returns zero if an error occurs. To obtain more
information about the error use getErrorInfo.

Description

Use writeRuntimeRecord to save all parameters for the report specified by hReport to the
ASCII Viewer Control File specified by lpszControlFile. If lpszControlFile is the NULL
pointer or contains the null string, writeRuntimeRecord will overwrite the Viewer

Chapter 4

118 Developing Applications, SQL Edition

Control File read via getRuntimeRecord. If the hReport was not returned from
getRuntimeRecord, lpszControlFile must contain a filename.

Related Functions

getRuntimeRecord, execRuntime

Example

To read an existing ASCII Viewer Control File, modify some parameters and then save the
results in the same file:

{
 int hRpt;

 if (hRpt = getRuntimeRecord ((LPSTR)"App Name",
 (LPSTR)"c:\\rrdata\\runrecd"))
 {
 setScopeUsage (hRpt, 'E');
 setFilterUsage (hRpt, 'E');
 writeRuntimeRecord (hRpt, NULL);
 }
}

Developing Applications, SQL Edition 119

Chapter 5
Using the Custom Control (OCX)
Introduction

As noted in Chapter 1, the Viewer OCX (or custom control) provides
one of three methods for running reports using the Report Viewer. The
other methods are explained in Chapter 2, “Using the Report Viewer,”
and Chapter 4, “Accessing the Viewer DLL.”
Like the report control in the Professional Edition of VB, the Viewer
OCX allows you to incorporate database reporting into your
applications. However, it provides the following additional
advantages:

 Access to the more powerful reporting capabilities of R&R
Report Designer;

 More control over how your report is printed by means of over
50 properties that can be set at design time or run time;

 Far more design-time support in the form of dialog boxes that
allow you to point and click to override settings in your report,
such as tables, sorting and grouping, user parameters, and
destination.

The Viewer OCX is explained in the following sections:
• Installation
• Determining Report Status
• Using RSW.INI for Default Information
• Using the OCX
• Custom Control Properties

Installation
The OCX is installed if you select a Setup Type of “Typical” or if you
select “Custom” and specify Report Viewer as one of the options.
To add the OCX to an existing VB project, select Tools ⇒ Custom
Controls to add the file RSW32.OCX, which Setup installs into your
Windows System directory. For information about other files you will

Chapter 5

120 Developing Applications, SQL Edition

need to distribute when you use the OCX in your applications, see
Chapter 8, “Distributing Reports.”
Setup also copies two sample applications into appropriate
subdirectories of the R&R SAMPLE directory:

• OCXTEST, which is installed in SAMPLE\MFCOCX,
demonstrates a common way to use an OCX control in a MFC
C++ program.

• RSWVB32, which is installed in SAMPLE\VB, demonstrates
the use of the OCX in Visual Basic code.

Each sample has an accompanying README file that explains it in
more detail.

Determining Report Status
When you use the custom control to print a report, you may want to
know the status of the report, such as whether the report printed
successfully, or if not, which error occurred while printing. How the
custom control returns this status to you depends on which method of
report printing you use.
The custom control supports two methods of report printing,
synchronous and asynchronous. Synchronous printing means that the
report will complete printing before the next line of procedure code is
executed. Asynchronous printing means that the report will be printed
while the remaining lines of procedure code are executing. Each
method has its own way of returning status information to you.
You print a report synchronously by setting the Action property to 1
(e.g. RSReport1.Action = 1). When you print a report synchronously,
the status of the report is returned in the following properties:

 LastErrorCode, which will contain the type of error that
occurred, or 0 for no error;

 LastErrorString, which will contain a text message describing
the error, if any;

 LastErrorPage, which will contain the page number of the last
page printed.

You print a report asynchronously by setting the Action property to 2
(e.g. RSReport1.Action = 2). When you print a report asynchronously,
the status of the report is not returned in a property, but is written into

 Using The Custom Control

Developing Applications, SQL Edition 121

the Viewer status file, which is by default a text file called
RSWRUN.OUT in the current working directory. You can change the
path and name of the status file via the StatusFileName property. (See
Understanding the Viewer Status File in Chapter 2 for a description
of the contents of the status file.)

Using RSW.INI for Default Information
Report Designer stores log-on information in the file RSW.INI, which
is created in the Windows directory when you install R&R. When you
start Report Designer, the log-on information (except the password) is
saved in RSW.INI. The default log-on information for each database
platform is replaced whenever you connect to that platform. The
Viewer will look for an RSW.INI file in the Windows directory and
attempt to use the defaults if the custom control does not supply the
log-on information. Any information you supply using custom control
properties will always override the RSW.INI setting (see Figure 2.2 in
Chapter 2 for a list of RSW.INI settings that the Viewer will use).
If you distribute reports to other users, you can customize RSW.INI for
each user and distribute it with the other Viewer files. However, the
custom control properties provide a more reliable way to supply
accurate and up-to-date log-on information.

Using the OCX
You use the R&R OCX just like any other OCX. Simply click on the
R&R tool in the VB Toolbox. Then move the mouse pointer over your
form, press the left mouse button down, and drag the mouse. When
you release the mouse button, the custom control will be placed onto
the form.
You can change the value of an OCX property in either of two ways:

 Enter or select values on the appropriate property pages of the
Report Control Properties dialog;

 Directly enter or select values for each property on the
Properties list.

Note that the OCX will be visible on your VB form at design time
only. At run time, it will not be displayed, but will be “at your service”
to print your reports to a printer; to a preview window; or to a text,

Chapter 5

122 Developing Applications, SQL Edition

database, or spreadsheet file. It does this by invoking the Viewer
executable (described in Chapter 2) through the Viewer DLL
(described in Chapter 4). As you will see, the OCX properties
correspond closely to the control parameters used by the Viewer. (See
Appendix A, “Viewer Equivalencies.”)
To print or display a report in your VB program, you must set at least
two properties:
1. Set the ReportName property to the name of the report you want to

print; alternatively, set the ReportPick property either to 1 (One) to
prompt the user to select a report or 2 (Many) to prompt the user to
select several reports in succession.

2. Set the Action property to 1 to trigger execution of the report.
The ReportName and ReportPick properties can be set at design time
or at run time. The Action property must be set at run time in your
procedure code (e.g., RSReport1.Action = 1). You can also set many
other properties (Destination, SortFields, etc.) to override the values
saved in the report.

Changing Values Using the Properties List
If you use the Properties list to set or change values, the data type of
the property determines how you change its value:

 You change an integer property by simply typing a value into
the settings box.

 You change an enumerated property by typing a number into
the settings box or by selecting a value from the drop-down list
that appears when you click on the down arrow next to the
settings box. You can also double-click on an enumerated
property to cycle through the list of values.

 You change string properties by typing a string in the settings
box. You can change many string properties by means of dialog
boxes that appear when you click on the ellipsis (...) to the right
of the settings box, or when you double-click on the property.

 You set some properties by selecting or entering either True (to
turn the setting on) or False (to turn the setting off).

 Using The Custom Control

Developing Applications, SQL Edition 123

Changing Values Using the Control Properties Dialog
The Control Properties dialog (see Figure 5.1) consists of 12 property
pages that you can use to control any of the more than 50 custom
control properties.

Figure 5.1 Report Control Properties Dialog

To set or change values on a property page, do the following:
1. Select the appropriate tab to open the property page.
2. Change values by clicking buttons/checkboxes, entering text into

text boxes, and selecting ellipses buttons (where available) to
choose from browse dialogs.

3. Select Apply (or click another tab) to save your changes.
4. Repeat Steps 1 – 3 for each property page as necessary.
5. When you are finished setting or changing values, select OK to

close the Control Properties dialog.
The following sections briefly explain the settings on each of the
property pages. See the Custom Control Properties section for
additional information about individual properties, including examples
and descriptions of how to set values in your procedure code.

Chapter 5

124 Developing Applications, SQL Edition

General Property Page
Settings on the General property page control report selection and
status checking.

Setting Purpose
Report Name Sets the ReportName property to specify the

report to be run. Either enter the path and name
of the report or select the ellipsis button to
display the Open dialog for selection of a report
file.

Data Source Sets the DataSource property to specify or
override the data source for the report(s).

Clear ... Sets the ResetProperties property to specify
whether settings are reset to their default values
when a new report is selected.

Update ... Sets the UpdateControl property to specify
whether settings are reset to the saved values
when a new report is selected.

Display Report
Errors

Sets the DisplayError property to either True
(display errors) or False (don’t display errors.

Display Report
Status

Sets the DisplayStatus property to either True or
False to control whether a Print Status window is
displayed when a report is printed.

Allow User ... Sets the NoEscape property to control whether a
Cancel button is available on the Print Status
window (when Display Report Status is set to
True).

Report Pick Sets the ReportPick property to enable the user
to choose a report (when set to 1) or a series of
reports (when set to 2) at report execution.

Print To Property Page
Settings on the Print To property page control or override the print
and/or export destination of the report.

 Using The Custom Control

Developing Applications, SQL Edition 125

Setting Purpose
Report
Destination

Sets the Destination property to specify the
report destination: Saved Destination, Prompt
User, Preview Window, Printer, or Export. If set
to Export, a drop-down list of export types is
available (Text, DBF, WKS, RTF, Text Data, or
Word Merge file)

Excel Export
Destination

Sets the ExportDestination property to specify
the destination (Preview Window, Printer, or
File) for an export type of Excel PivotTable or
Excel Chart. If File is selected, enter the output
name in the File Name box.

File Name Sets the PrintFileName property to specify the
output file for any export to file.

Printer Property Page
Settings on the Printer property page control or override the destination
printer for the report.

Setting Purpose
Printer
Destination

Sets the Printer property to specify whether to
use the saved printer, override the saved printer,
or prompt the user at report execution for printer
selection.

Print a Test
Pattern

Sets the TestPattern property to specify whether
a test pattern will be printed for purposes of
checking report layout before printing.

Start Page Sets the StartPage property to specify the page at
which to begin printing.

End Page Sets the EndPage property to specify the page at
which to end printing.

Number of
Copies

Sets the CopiesToPrinter property to specify
how many report copies to print.

Chapter 5

126 Developing Applications, SQL Edition

Preview Window Property Page
Settings on the Preview Window property page control the location,
dimensions, and title of the preview window.

Setting Purpose
Left Sets the WindowLeft property to specify the

starting point for the left edge of the preview
window.

Height Sets the WindowHeight property to specify the
height (in pixels) of the preview window.

Top Sets the WindowTop property to specify the
starting point for the top edge of the preview
window.

Width Sets the WindowWidth property to specify the
width (in pixels) of the preview window.

Minimize Button Sets the WindowMinButton property to control
whether the preview window will have a
minimize control in the caption bar.

Maximize Button Sets the WindowMaxButton property to control
whether the preview window will have a
maximize control in the caption bar.

Border Sets the WindowBorderStyle property to control
whether the preview window will be fixed or
variable size.

Title Sets the WindowTitle property to specify the
text that will appear in the title bar of the preview
window, the Print Status window (if Display
Report Status is set to True), and in the title bars
of the dialog that displays when the Printer, Port,
Destination, or Scope value is a question mark.

Filter Property Page
The Filter property page specifies or overrides the filter to be used to
filter the report data.

 Using The Custom Control

Developing Applications, SQL Edition 127

Setting Purpose
Saved Filter Sets the Filter property to specify using the saved

filter, ignoring the saved filter, overriding the
saved filter, or prompting the user.

Where Sets the Where property to modify the WHERE
clause of the SQL statement in an Auto-SQL
report.

User-SQL Property Page
The User-SQL property page specifies replacement strings for those
portions of the report’s SELECT statement that have been marked as
replaceable.

Setting Purpose
Replace Lists replaceable strings from the report’s

SELECT statement.
With Sets the Replace property to modify the SELECT

statement in a User-SQL report.

Sort Property Page
The Sort property page specifies or overrides the field(s) to be used for
sorting of report data.
Selecting one or more sort fields in the numbered field-selection slots
sets the SortFieldsString property accordingly.
To display a drop-down list of available fields, click the arrow at the
right of the selection slot. By default, sorting is in ascending order; to
change to descending order, click the Ascending box to remove the
checkmark.

Group Property Page
The Group property page specifies or overrides the field(s) to be used
for grouping of report data.
Selecting one or more group fields in the numbered field-selection
slots sets the GroupFieldsString property accordingly.
To display a drop-down list of available fields, click the arrow at the
right of the selection slot.

Chapter 5

128 Developing Applications, SQL Edition

Joins Property Page
The Relations property page specifies or overrides the related tables for
the report.

Setting Purpose
Alias Lists aliases of the related tables.
Table Sets the RelatedTables property to specify or

override table joins.

Database Property Page
The Database property page provides settings for master table selection
and for the name and location of the text memo file to be used by the
report.

Setting Purpose
Master Table Sets the MasterTable property to override the

master table saved with the report.
Memo File Sets the MemoFileName property to specify the

name and location of the text memo file to be
used by the report.

Defaults Property Page
The Defaults property page specifies or overrides defaults for data,
image, and report directories.

Setting Purpose
Default Report
Directory

Sets the ReportDirectory property to specify
default location for report or library files.

Default Image
Directory

Sets the ImageDirectory property to specify
default location for image files used by reports.

Default Data
Directory

Sets the DataDirectory property to specify
default locations for Xbase tables, Paradox
tables, and text memo files.

Parameters Property Page
The Parameters property page sets the ParametersString property to
specify user parameter values to be used with the report.

 Using The Custom Control

Developing Applications, SQL Edition 129

Setting Purpose
User Parameters Name(s) of the user-defined parameter(s) in the

report, as specified using the RIPARAM()
function.

Value Corresponding value to be assigned to each user
parameter at report execution.

Custom Control Properties
The following properties are available in the R&R Custom Control:

(About)
Description
Double-click About to display the version of the R&R custom control.

Availability
Design time only

Action
Description
Action is a property that triggers the print, display, or export of the
report.

Usage
[form.]ControlName.Action [=Action%]

Example
RSReport1.Action = 1

« Prints, displays, or exports the report, depending on the Destination
property, and does not return until the report is completed. »

Comments
Set the Action property to 1 or 2 in your procedure code to print,
display, or export the report in response to a user event.
If it is set to 1, the action is synchronous, which means that the next
line of Visual Basic procedure code will not execute until the report is

Chapter 5

130 Developing Applications, SQL Edition

completed. The status of the report will be returned in the
LastErrorCode, LastErrorString, and LastErrorPage properties.
If it is set to 2, the action is asynchronous, so that the report may still
be running when the next line of Visual Basic procedure code is
executed. When the report does complete, its status will be written into
the text file RSWRUN.OUT in the current working directory(or to the
path specified with the StatusFileName property).
In most cases, you will find it more convenient to set this property to 1.

Data Type
Integer

Availability
Write-only at run time

CopiesToPrinter
Description
Specifies the number of copies to be printed if you are printing to a
printer (if the Destination property is set to 1).

Usage
[form.]ControlName.CopiesToPrinter[= NumCopies%]

Example
RSReport1.CopiesToPrinter = 3

« Prints three copies of the report. »

Comments
This property is optional. The number must be between 0 and 999,
inclusive. If you leave this property blank or enter 0, the Viewer prints
the number of copies saved with the report.

Data Type
Integer

Availability
Design time; Run time

 Using The Custom Control

Developing Applications, SQL Edition 131

Database
Description
For database platforms that support multiple databases, you can use
this property to specify (or override) the database for the report tables.

Usage
[form.]ControlName.Database[= DatabaseName$]

Example
RSReport1.Database = "sales"

« Use tables in the database named “sales.” »

Comments
SQL Server is one platform that supports multiple databases.

Data Type
String

Availability
Run time

DataDirectory
Description
Specifies the default directory where the Viewer will look for Xbase
and Paradox tables and text memo files to be used when the report is
printed.

Usage
[form.]ControlName.DataDirectory[= DirectoryName$]

Example
RSReport1.DataDirectory = "c:\mis\data"

« Looks for data files in a directory called “c:\mis\data.” »

Comments
If the Xbase and Paradox tables and text memo files used in the report
are not in the saved directories, then the Viewer will look in this
directory for these files.

Chapter 5

132 Developing Applications, SQL Edition

Data Type
String

Availability
Run time

DataSource
Description
Specifies the ODBC data source to be used to access the report data.

Usage
[form.]ControlName.DataSource[= DataSourceName$]

Example
RSReport1.DataSource = "dBASE MS – R&R Sample"

« Use tables in the data source named “dBASE MS – R&R Sample.” »

Comments
This parameter is optional. The data source should contain the same
table(s) as the data source originally used in the report.
If you leave this property blank, the Viewer uses the data source saved
with the report.
At design time, you can change this property in two ways:

• Double-click this property to display the General property page.
Click the Data Source ellipsis button to display the Data Source
Connections dialog (see Figure 5.2); then highlight the data
source and select OK.

• Simply enter the data source name into the settings box.

Data Type
String

Availability
Design time; Run time

 Using The Custom Control

Developing Applications, SQL Edition 133

Figure 5.2 Data Source Connections Dialog Box

Destination
Description
Specifies the destination to which your report is to be printed or
exported (Preview Window, Printer, Text File, DBF File, WKS File, or
RTF File).

Usage
[form.]ControlName.Destination[= Destination%]

Example
RSReport1.Destination = 1

« Sends the report to a preview window. »

Comments
This property is optional. Set the property to 0 (the default) to print to
the printer saved with the report (or to the printer specified in the
Printer property). It can contain one of the following values:

 0 – Saved (uses the printer saved with the report)
 1 – Window (sends the report to a preview window)
 2 – Printer (sends the report to a printer)
 3 – Text File (exports the report to an ASCII text file)
 4 – DBF File (exports the report to a DBF database file)
 5 – WKS File (exports the report to a WKS spreadsheet file)
 6 – Prompt user (asks user for destination);
 7 – RTF File (exports to a Rich Text Format file);

Chapter 5

134 Developing Applications, SQL Edition

 8 – Text Data File (exports to a Text Data file);
 9 – Word Merge File (exports to a Word Merge File).
 10 – Excel Chart
 11 – Excel PivotTable

If you specify 3 (Text File), 4 (DBF File) 5 (WKS File), 7 (RTF File),
8 (Text Data file), or 9 (Word Merge file), you can also set the
PrintFileName property to provide the name of the destination file to
override the saved destination file name.
If you specify 1 (Window), the report will be sent to the display,
allowing the user to preview the report before printing it. After
previewing the report, the user can select the Print tool in the Preview
window to send the report to the printer saved with the report or
specified in the Printer property. Note that if the value of Destination is
1 and the PrintFileName property has been set, the report will be
output to the file specified in PrintFileName when the user selects
Print in Preview.
To print the report to a text file that includes embedded printer codes,
set Destination to 0 (saved) and specify an output file name with
PrintFileName.

Setting this property to 6 (Prompt user) allows the user to select the
print destination at run time. The user will see the dialog box shown in
Figure 5.3. If the WindowTitle property is set, the title bar will contain
the WindowTitle value. If WindowTitle is empty, the title bar will
contain the report name.

Figure 5.3 Print Destination Dialog Box

The user can select Screen to preview the report; Printer to print it; or
Export to display a dialog for selection of an export type (Excel Chart,
Excel PivotTable, RTF, Text, Text Data, Word Merge, Xbase, or

 Using The Custom Control

Developing Applications, SQL Edition 135

Worksheet). If the user selects Cancel, the report will not run, and the
“Canceled” status message will be returned in the LastErrorString
property or the Viewer status file.

Data Type
Integer (Enumerated)

Availability
Design time; Run time

DisplayError
Description
Specifies whether or not errors are to be displayed when a report is
printed.

Usage
[form.]ControlName.DisplayError [= {True|False}]

Example
RSReport1.DisplayError = True

« Specifies that any errors that occur when a report is printed will be
displayed. »

Comments
This property is optional. If DisplayError is True, Viewer error
messages are displayed in addition to being returned in the
LastErrorString property. In this case, the Viewer stops processing a
report when it encounters an error and displays an error message
dialog. The user must then select OK to acknowledge the error and
terminate processing.
If DisplayError is False, Viewer error messages are not displayed, but
are returned in the LastErrorString property or the status file.

Data Type
Integer (Boolean)

Availability
Design time; Run time

Chapter 5

136 Developing Applications, SQL Edition

DisplayStatus
Description
Specifies whether or not status information is to be displayed when a
report is printed.

Usage
[form.]ControlName.DisplayStatus [= {True|False}]

Example
RSReport1.DisplayStatus = False

« Specifies that status information will not be displayed when a report
is printed. »

Comments
The DisplayStatus property enables you to specify whether the Viewer
program should display a Print Status window while it is generating a
report. If the property is set to True, the Viewer will display a Status
window. If NoEscape is set to False, the Status window will contain a
Cancel choice that allows the user to terminate a report in progress.
Note that pressing Cancel will not interrupt execution of the Viewer
during processing of a SELECT statement by a server.
If DisplayStatus is set to False, the Viewer will not display a Status
window but will instead display as an icon while it is running.

Data Type
Integer (Boolean)

Availability
Design time; Run time

EndPage
Description
Specifies at which page of the report to end printing.

Usage
[form.]ControlName.EndPage[= Page%]

 Using The Custom Control

Developing Applications, SQL Edition 137

Example
RSReport1.EndPage = 20

« Specifies that the report should end printing at the completion of
page 20. »

Comments
This property is optional. The StartPage and EndPage properties allow
you to override the starting and ending page numbers saved with the
report. The default value for these properties is blank.
To specify page numbers, include a StartPage value, an EndPage
value, or both. If you specify both, EndPage must be equal to or greater
than StartPage. For example, users can restart a canceled report where
it was interrupted by specifying the starting page number as the
StartPage value and 999999999 as the EndPage value. To reprint one
or more consecutive pages of a report, specify the page numbers in the
StartPage and EndPage properties. To print just one page, specify the
same page number for both properties.

Data Type
Integer

Availability
Design time; Run time

ExportDestination
Description
Specifies the destination (display, file, or printer) when exporting to an
Excel PivotTable or Chart.

Usage
[form.]ControlName.ExportDestination[= Destination%]

Example
RSReport1.ExportDestination = 2

« Exports the report to a file. »

Chapter 5

138 Developing Applications, SQL Edition

Comments
Set this property to one of the following values if you are exporting to
Excel PivotTable or Excel Chart.
 0 – Window
 1 – Printer
 2 – File
If you set the value to 2 (File), use PrintFileName to specify a file
name for the export.

Data Type
Integer (Enumerated)

Availability
Design time; Run time

Filter
Description
Specifies a filter to select records to be used when printing the report.

Usage
[form.]ControlName.Filter[=Filter$]

Example
RSReport1.Filter = "Year > 1994"

Comments
The optional Filter property specifies a logical expression that will
override the saved filter, if any, when the value in Include is 2.
The syntax of the Filter expression is identical to that of a calculated
field expression that returns a logical value. The Filter expression can
be up to 1024 characters long. When an expression is specified, the
Viewer selects all records where the value of the Filter expression is
true. The expression can refer to any data or calculated fields that are
available in the report.
For example, if you enter the filter expression CITY="Dallas", the
Viewer will select all records where the value of this expression is
true, in other words all records where the value in the CITY field is

 Using The Custom Control

Developing Applications, SQL Edition 139

Dallas. If the city name were in a character field named NOTE, the
filter expression LIKE("*Dallas*",NOTE) would select all records in
which the NOTE field contained the word "Dallas".
Entering the expression PASTDUE=T tells the Viewer to select all
records where the value in the PASTDUE field is true. Entering
AMOUNT>=200 will select all records where the value in the
AMOUNT field is greater than or equal to 200.
Entering the following expression will select all records where the date
in the INVDATE field of the RRORDERS table is January 31, 1996:

RRORDERS·INVDATE={01/31/96}

Compound filter expressions can be entered by using parentheses. For
example, the following filter expression selects all records where the
value in the CITY field is either Dallas or Houston and where the
value in the SALES field is greater than 50,000:

(CITY="Dallas" or CITY="Houston") and SALES>50000

Note that the value of Include must be 2 in order for the Filter override
to take effect. If you omit Include, the Filter value will be ignored and
the report will be run using the saved filter (if any).
When setting this property at run time, make sure that you enclose
your filter expression in double quotes. If your filter expression
contains internal quotes, such as:
LNAME = "Jones"
make sure to change all of the internal double quotes to single quotes
and then put double quotes around the entire filter expression, such as:
"LNAME = ‘Jones’"
At design time, you can change this property array in two ways:

 Double-click this property to display the Filter property page
(see Figure 5.4).

Chapter 5

140 Developing Applications, SQL Edition

Figure 5.4 Filter Property Page

 Simply enter the filter expression into the settings box.

Data Type
String

Availability
Design time; Run time

GroupFields
Description
Specifies the field(s) to be used to group the data in your report.

Usage
[form.]ControlName.GroupFields(ArrayIndex)[= "GroupField"]

Example
RSReport1.GroupFields(0) = "Division"

« Use “Division” as the first group field. »

Comments
Group fields can be database fields, calculated fields or total fields.

 Using The Custom Control

Developing Applications, SQL Edition 141

When setting this property at run time, use a separate line of code to
specify each group field. The first group field you specify must be
assigned array index 0, the second group field must be assigned array
index 1, etc. The index values you assign must be continuous; no gaps
are allowed (0,1,2 would be correct, but 0,1,3 would be wrong).

Data Type
Array of strings

Availability
Run time

GroupFieldsString
Description
Specifies the field(s) to be used to group the data in your report.

Usage
[form.]ControlName.GroupFieldsString[= "GroupField1;GroupField2"]

Example
RSReport1.GroupFieldsString = "Division"

« Use “Division” as the first group field. »

Comments
Group fields can be database fields, calculated fields, or total fields.
At design time, you can change this property array in two ways:

 Double-click this property to display the Group property page,
which lists group fields in the report. Clicking on the down
arrow next to each group field will drop down a list of all fields
used in the report from which you can select.

 Enter group field names separated by semicolons. To override
some group fields, but not all of them, you must use a
semicolon as a place-holder. For example, to change the first
and third group field, you would enter “Division;;Region”.

Data Type
String

Availability
Design time

Chapter 5

142 Developing Applications, SQL Edition

ImageDirectory
Description
Specifies the default directory where the Viewer may look for image
files used in the report.

Usage
[form.]ControlName.ImageDirectory[= DirectoryName$]

Example
RSReport1.ImageDirectory = "c:\mis\images"

« Looks for image files in a directory called “c:\mis\images.” »

Comments
The Viewer will look for image files in this directory when they are
not in the saved directory. The directory you specify with this property
will override any default image directory specified in the RSW.INI
file.

Data Type
String

Availability
Run time

Include
Description
Specifies which, if any, filter to use when the report is run.

Usage
[form.]ControlName.Include [= QueryOption%]

Example
RSReport1.Include = 2

« Ignores the filter in the report and uses the filter expression in the
Filter property in place of it. »

 Using The Custom Control

Developing Applications, SQL Edition 143

Comments
The optional Include property allows you to control whether a filter is
applied to the report. Include can have one of four values:

0 – Saved. Run the report using the filter saved with it, if any. The
expression in the Filter property will be ignored and the report
will be run exactly as it was saved.

1 – Entire. Run the entire report, ignoring any filter saved in the
report or contained in the Filter property.

2 – Override. Override the saved filter with the expression in the
Filter property. The report will be run with the records selected
by the Filter property expression.

3 – Prompt user. Display a dialog box allowing the user to enter a
filter expression or edit the filter saved with the report. If no
filter was saved with the report, the Insert Condition dialog will
display, as shown in Figure 5.5.

Figure 5.5 Insert Condition Dialog Box

If a filter was saved with the report, the Filter dialog box will display,
as shown in Figure 5.6.

Figure 5.6 Filter Dialog Box

Chapter 5

144 Developing Applications, SQL Edition

When you set Include to 3, the value of the Filter property is always
ignored.
Note that Include has no impact on the Where property. If the Where
property is specified, it will always be evaluated by your SQL software
directly; any filter will be applied to the result.

Data Type
Integer (Enumerated)

Availability
Design time; Run time

LastErrorCode
Description
Returns the error code for the last Viewer error. It will be one of the
following four values:
 0 = No error;
 1 = User canceled;
 2 = Error in Viewer parameters;
 3 = Error in report.

Usage
[form.]ControlName.LastErrorCode

Example
 'If error occurs, display error message
 RSReport1.Action = 1
 if RSReport1.LastErrorCode < > 0 then
 MsgBox RSReport1.LastErrorString
 end if

« If an error occurs, this code calls up a message box that displays the
error string. »

Comments
LastErrorCode is only valid after setting the Action property to 1. If
you set Action to 2, the report is run asynchronously, so LastErrorCode
will not be set.

 Using The Custom Control

Developing Applications, SQL Edition 145

Data Type
Integer

Availability
Run time (read and write)

LastErrorPage
Description
Returns the page number of the last successfully printed report page.

Usage
[form.]ControlName.LastErrorPage

Example
 'If error occurs, display error message
 RSReport1.Action = 1
 if RSReport1.LastErrorCode < > 0 then
 pagestr$ = “; last page printed was “
 + str(RSReport1.LastErrorPage)
 MsgBox RSReport1.LastErrorString + pagestr$
 end if

« If an error occurs, this code calls up a message box that displays the
error string and the last page printed. »

Comments
LastErrorPage is only valid after setting the Action property to 1. If
you set Action to 2, the report is run asynchronously, so LastErrorPage
will not be set.

Data Type
Integer

Availability
Run time (read and write)

LastErrorString
Description
Returns the error string for the last Viewer error.

Usage
[form.]ControlName.LastErrorString

Chapter 5

146 Developing Applications, SQL Edition

Example
 'If error occurs, display error message
 RSReport1.Action = 1
 if RSReport1.LastErrorCode < > 0 then
 MsgBox RSReport1.LastErrorString
 end if

« If an error occurs, this code calls up a message box that displays the
error string. »

Comments
LastErrorString is only valid after setting the Action property to 1. If
you set Action to 2, the report is run asynchronously, so
LastErrorString will not be set.

Data Type
String

Availability
Run time (read and write)

LoadProperties
Description
LoadProperties is a method that can be used to update the OCX
controls with the current report settings.

Usage
[form.]ControlName.LoadProperties()

Example
RSReport1.LoadProperties()

«Updates the OCX controls with the settings from the current report. »

Comments
This method is used to load all OCX properties with the values from
the current report; use it to display or explicitly see all report
properties.

Availability
Run time

 Using The Custom Control

Developing Applications, SQL Edition 147

MasterTable
Description
Specifies the name of a table that will override the master table saved
with the report.

Usage
[form.]ControlName.MasterTable[= MasterTableName$]

Example
RSReport1.MasterTable = "school.dbo.students"

« Uses the table “school.dbo.students” as the master table. »

Comments
This property is optional. The master table you specify should have the
same columns as the master table used in the report. If you leave this
property blank, Viewer uses the master table saved with the report.
At design time, you can change this property in two ways:

 Double-click this property to display the Database property
page. Then click the ellipsis button next to Master Table to
open the Select Master Table dialog (see Figure 5.7).

 Figure 5.7 Master Table Dialog (SQL Server)

Chapter 5

148 Developing Applications, SQL Edition

 Simply enter the table name into the settings box.

Data Type
String

Availability
Design time; Run time

MemoFileName
Description
Specifies the name and optional directory location of the text memo
file to be used in the report, which will override the text memo file
saved with the report.

Usage
[form.]ControlName.MemoFileName[= MemoFileName$]

Example
RSReport1.MemoFileName = "c:\mis\q3notes.txt"

« Selects the memo file named “q3notes.txt” in the c:\mis directory. »

Comments
This property is optional.

 If both a directory and a file name are specified, this directory
is the only directory searched and this file name is the only file
the Viewer searches for.

 If a directory is specified without a file name, the Viewer
searches the specified directory for the text memo file name
saved with the report.

 If a file name is specified without a directory, the Viewer
searches for a file with the specified name in the directory
saved with the report, then in the default data directory as
specified in the DataDirectory property or in RSW.INI.

If you leave this property blank, the Viewer uses the text memo file
saved with the report, if any.
At design time, you can change this property in two ways:

 Double-click this property to see the Database property page.
Then click the ellipsis button next to the Memo File box to
display the Select Memo File dialog, which allows you to select

 Using The Custom Control

Developing Applications, SQL Edition 149

a memo file and browse drives, directories, and files to which
you have access.

 Simply enter the file name into the settings box.

Data Type
String

Availability
Design time; Run time

NoEscape
Description
Specifies whether a report can be canceled.

Usage
[form.]ControlName.NoEscape [= {True|False}]

Example
RSReport1.WindowNoEscape = True

« Specifies that a report cannot be canceled once it begins to be
printed. »

Comments
This property is optional, and can be set to either True or False. True
means the Cancel button in the status window is not active while
reports are being output. False means the user may select Cancel
during report output to pause or end the job. The default value is false.
Note that pressing Cancel will not interrupt execution of the Viewer
during processing of a SELECT statement by a server.
Note that the Status window appears only when the DisplayStatus
property is set to true.
If the user cancels synchronous execution of the report, the
LastErrorCode property is set to C. If the report is run asynchronously,
the RO_ECODE entry in the status file contains a C (see the section in
Chapter 2 entitled Understanding the Status File).

Data Type
Integer (Boolean)

Chapter 5

150 Developing Applications, SQL Edition

Availability
Design time; Run time

Parameters
Description
Specifies user parameter values to be used when the report is printed.

Usage
[form.]ControlName.Parameters(ArrayIndex)
[= ParameterName$=ParameterValue$]
Enter a “name=value” string for each RIPARAM() function in your
report for which you want to define a value. Use a separate line of code
for each change.
The order of strings in the array does not matter, since each
RIPARAM() function is identified by name.

Example
RSReport1.Parameters(0) = "Title=Cumulative Earnings"

« Uses the value “Cumulative Earnings” wherever the function
RIPARAM(“Title”) appears in the report. »

Comments
Use this property to define values for the RIPARAM() functions in
your report. You can specify up to six (6) different parameters in the
custom control (Parameters(0) - Parameters(5)). See Chapter 3,
“Parameter Passing,” for information on how to use this feature.

Data Type
Array of strings

Availability
Run time

ParametersString
Description
Specifies user parameter values to be used when the report is printed.

 Using The Custom Control

Developing Applications, SQL Edition 151

Usage
[form.]ControlName.ParametersString[=ParameterName$=Parameter
Value$]

Example
RSReport1.ParametersString = "Title=Cumulative Earnings"

« Uses the value “Cumulative Earnings” wherever the function
RIPARAM(“Title”) appears in the report. »

Comments
At design time, you can change this property array in two ways:

 Double-click this property to display the Parameters property
page, which lists parameters and values in the report.

 Enter the parameter/value pairs separated by semicolons.

Data Type
Array of strings

Availability
Design time

Password
Description
Enters the password needed to use database tables on a password-
protected SQL database.

Usage
[form.]ControlName.Password[= Password$]

Example
RSReport1.Password = "brokencrystal"

« Enters the password “brokencrystal.” »

Comments
If a valid password and user name are not provided, the user will be
prompted to enter them when the report is run.

Chapter 5

152 Developing Applications, SQL Edition

Data Type
String

Availability
Run time

Port
Description
Specifies the name of the printer port to which the report is to be
printed.

Usage
[form.]ControlName.Port [= PortName$]

Example
RSReport1.Port = "LPT1:"

« Prints the report to the printer port named “LPT1:”. »

Comments
This property is optional. Enter a value such as “LPT1:” to override the
printer port (and the printer associated with that port) saved with the
report. Note that the colon is required.
You can also use the question mark (?) value or enter the word
“Default” for this property. When the Port property contains a question
mark, the user will see the Print dialog box shown in Figure 5.8. When
the Port property contains the word “Default,” Viewer will use the
default Windows printer port. (See the description of the Printer
property.)
At design time, you can change this property by entering the port name
into the settings box.

Data Type
String

Availability
Design time; Run time

 Using The Custom Control

Developing Applications, SQL Edition 153

Printer
Description
Specifies the name of the printer to which the report is to be printed.

Usage
[form.]ControlName.Printer [= PrinterName$]

Example
RSReport1.Printer = "HP LaserJet 4/4M"

« Prints the report to a printer called “HP LaserJet 4/4M.” »

Comments
This property is optional. Enter a value to override the printer saved
with the report. This property can have one of two values:

 The name of an available Windows printer. Available
Windows printers are listed in the Report Designer Print dialog
(accessed by selecting File ⇒ Print in Report Designer). The
value is case insensitive (that is, you can enter it in upper,
lower, or mixed case).

 The question mark (?) value, to allow the user to select a
printer at report execution. When the Printer property contains
a question mark, the Print dialog will display, as shown in
Figure 5.8.

 The word Default to force the Viewer to use the current default
Windows printer. Use this setting only if you are sure that the
default printer is compatible with the layout of your report(s)

Figure 5.8 Print Dialog Box

Chapter 5

154 Developing Applications, SQL Edition

Initially, the printer saved with the report is highlighted. The user can
select another printer as necessary.
If this property is blank, the printer saved with the report will be used.
At design time, you can change this property in two ways:

 Double-click this property to display the Printer property page;
then select the appropriate Printer Destination setting (Use
Saved Printer, Prompt User, or Override Saved Printer).

 Simply enter the printer name into the settings box.

Data Type
String

Availability
Design time; Run time

PrintFileName
Description
Specifies the name of the file to which the report is to be printed or
exported.

Usage
[form.]ControlName.PrintFileName[= FileName$]

Example
RSReport1.PrintFileName = "c:\output\q3sales.txt"

« Prints the report to a file named “q3sales.txt” in the c:\output
directory. »

Comments
Use this property if you have set the Destination property to 3 (Text
File), 4 (DBF File) 5 (WKS File), 7 (RTF File), 8 (Text Data file), or 9
(Word Merge file) and you want to override the saved destination.
At design time, you can change this property in two ways:

 Double-click this property to display the PrintTo property page;
then enter the appropriate file name in the File Name box.

 Simply enter the filename into the settings box.

 Using The Custom Control

Developing Applications, SQL Edition 155

Data Type
String

Availability
Design time; Run time

RelatedTables
Description
Specifies table joins to override those saved with the report.

Usage
[form.]ControlName.RelatedTables(ArrayIndex)
[= Alias$=TableName$]

Example
RSReport1.RelatedTables(0) = "FIRST=dbo.students"
RSReport1.RelatedTables(1) = "SECOND=dbo.grades"

« Changes the first and second table joins in the report. »

Comments
These properties are optional. If you do not specify any table join
overrides, the Viewer uses the table joins saved with the report. It
searches for the related tables using the search rules explained in
Chapter 8.
When setting this property at run time, use a separate line of code for
each change. Up to nine (9) different table joins may be specified
(RelatedTables(0) – RelatedTables(8)).

Data Type
Array of strings

Availability
Run time

RelatedTablesString
Description
Specifies related tables to override those saved with the report.

Chapter 5

156 Developing Applications, SQL Edition

Usage
[form.]ControlName.RelatedTablesString
[= Alias$=TableName$,<IndexName$>,<TagName$>]

Example
RSReport1.RelatedTablesString =
"FIRST=c:\q2\first.dbf; SECOND=c:\q2\second.dbf"

« Changes the first and second table joins in the report. »

Comments
These properties are optional. If you do not specify any related table
overrides, the Viewer uses the tables saved with the report. It searches
for these tables using the rules explained in Chapter 8.
At design time, you can change this property array in two ways:

 Double-click this property to display the Joins property page.
Then use the ellipsis buttons to select related tables. This is the
preferred method, since it is easier and minimizes the
possibility of syntax errors.

 Enter the related table entries separated by semicolons. If you
want to override some related tables, but not all of them, you
must use a semicolon as a place-holder. For example, to change
the first and third related table, you would enter:

 “FIRST=c:\mis\first.dbf;;THIRD=c:\mis\third.dbf”.

Data Type
String

Availability
Design time

Replace
Description
Specifies replacement strings for a User-SQL report.

Usage
[form.]ControlName.Replace [= <<String1$>>,<<String2$>>,etc.]

 Using The Custom Control

Developing Applications, SQL Edition 157

Example
RSReport1.Replace = "<<from dbo.students>>,,
<<order by ST_PROV,CITY>>,<<>>"

« Changes the first and third replacement string in the User-SQL
statement, leaves the second one unchanged, and causes the fourth one
to be ignored. »

Comments
The optional Replace property allows you to supply a substitute value
to override all or part of the SELECT, EXEC, or DEFINE REPORTVIEW
statement used to select rows for a User-SQL report.
When you enter a SELECT, EXEC, or DEFINE REPORTVIEW statement in
Report Designer, you must enclose in double angle brackets (<< >>)
any portion that you may want to replace at run time. Using Replace,
you can provide substitute values for the delimited portions, leave
them intact, or specify that you want them to be ignored at run time.
You can delimit any text in the statement except the initial commands
SELECT, EXEC, and DEFINE REPORTVIEW, which cannot be substituted.
The initial SELECT, EXEC, or DEFINE REPORTVIEW must be followed by
a space. Note also that nesting parameters is not allowed — do not
insert delimiters within delimiters.
The syntax of Replace is a comma-separated list of parameters
enclosed in double angle brackets:

<<param1>>,<<param2>>,<<param3>>,...<<paramN>>

The number of parameters in the Replace value must match exactly the
number of delimited portions of the SELECT, EXEC, or DEFINE
REPORTVIEW statement saved with the report. Everything between
delimiters will be substituted exactly as entered in place of the
corresponding delimited text in the original statement. Space outside
delimiters is ignored.
For example, you may be using this SELECT statement to select rows
for a report:

SELECT *
FROM customers
WHERE state=’MA’
ORDER BY last_name

Chapter 5

158 Developing Applications, SQL Edition

You can delimit any parts of the statement except the initial word
SELECT. For example, you might delimit the FROM, WHERE, and
ORDER BY clauses, as shown in this example:

SELECT *
<<FROM customers>>
<<WHERE state=’MA’>>
<<ORDER BY cust_name>>

To provide substitutions for the three delimited sections of the SELECT
statement, you might supply the following value in the Replace
property:

<<FROM customers,sales>>,
<<WHERE customers.cust_no=sales.cust_no
 AND state=’CA’>>,
<<ORDER BY sale_date>>

To leave any delimited portion intact, use a comma as a place holder.
To replace the WHERE clause and leave the FROM and ORDER BY
clauses intact, you might use this Replace value:

,<<WHERE state=’CA’>>,

When you do not want a delimited portion of the statement to be
applied, use empty delimiters (<< >>) to specify a null replacement
value. For example, this Replace value specifies that the FROM clause
of the original SELECT should be left intact, and the WHERE and ORDER
BY clauses should be ignored:

,<<>>,<<>>

In general, application of the Replace property must yield a SELECT
statement that would itself be valid as the basis of an R&R User-SQL
report. For example, all columns in the result of the modified SELECT
must be uniquely named. In addition, any columns returned by the
original User-SQL SELECT that are used in the report must also be
returned by the modified SELECT with the same names and types.
Note that Replace values are not applied to Auto-SQL reports (reports
created by selecting master and related tables). To insert a WHERE
clause in the SQL statement for an Auto-SQL report, use the Where
property.

 Using The Custom Control

Developing Applications, SQL Edition 159

At design time, you can change this property in two ways:
 Double-click this property to see the User-SQL property page

(see Figure 5.9), which contains a list of replacement strings in
the report.

Figure 5.9 Replace User-SQL Property Page

 Enter the names of each replacement string separated by
commas. If you want to override some replacement strings, but
not all of them, you must use a comma as a place-holder.

Data Type
String

Availability
Design time; Run time

ReportDirectory
Description
Specifies a default directory where the Viewer may look for the report
library specified in ReportName or ReportLibrary.

Chapter 5

160 Developing Applications, SQL Edition

Usage
[form.]ControlName.ReportDirectory[= DirectoryName$]

Example
RSReport1.ReportDirectory = "c:\mis\reports"

« Looks for the report in a directory called “c:\mis\reports.” »

Comments
If the report file specified in the ReportName or ReportLibrary
property does not contain full path information, then the Viewer will
look for it in this directory. The default report directory you specify
with this property will override any default library directory specified
in the RSW.INI file.

Data Type
String

Availability
Design time; run time

ReportLibrary
Description
Specifies the library that contains the report to be printed.

Usage
[form.]ControlName.ReportLibrary[= LibraryFileName$]

Example
RSReport1.ReportLibrary = "c:\rrw\rrsample\rrsample.rp6"

« Selects the report library named “rrsample.rp6” in the c:\rrw\rrsample
directory. »

Comments
For a report being retrieved from a report library, this property
identifies the library that contains the report. The library name can
include a path.
If you don’t include a path, the Viewer searches for the file in the
default library directory specified in the ReportDirectory property. If

 Using The Custom Control

Developing Applications, SQL Edition 161

no default is specified in ReportDirectory, the Viewer searches for the
library in the default directory specified in the RSW.INI file. If
RSW.INI is not present and no default directory is specified, the
Viewer searches for the library in the current directory.
If the library you specify cannot be found or read, the Viewer will
return error status and, optionally, display an error message box (see
DisplayError).
At design time, you can change this property in two ways:

 Double-click this property to display the General property page.
Then click the ellipsis button next to Report Name to display
the Open dialog, which allows you to select a report library file
and browse drives, directories, and files to which you have
access.

 Simply enter the file name into the settings box.

Data Type
String

Availability
Design time; Run time

ReportName
Description
Specifies the name of the report to be printed.

Usage
[form.]ControlName.ReportName[= ReportName$]

Example
RSReport1.ReportName = "Order Invoice "

« Selects the report named “Order Invoice.” »

Comments
This property is required (unless ReportPick is set to 1 or 2). It
contains the name under which the report was saved. If the report is
being retrieved from a library, you must specify that library with the
ReportLibrary property.
At design time, you can change this property in two ways:

Chapter 5

162 Developing Applications, SQL Edition

 Double-click this property to see the General Property page.
Then click the ellipsis button next to Report Name to display
the Open Report dialog (see Figure 5.10), which contains a list
of report files in the location specified in the ReportDirectory
property.

Figure 5.10 Open Report Dialog Box

 Simply enter the report name into the settings box.

Data Type
String

Availability
Design time; Run time

ReportPick
Description
Allows the user to pick one or more reports to be printed from a list of
reports in the location specified by ReportDirectory.

Usage
[form.]ControlName.ReportPick [= PickOption%]

 Using The Custom Control

Developing Applications, SQL Edition 163

Example
RSReport1.ReportPick = 1

« Displays a list of reports in the location specified by ReportDirectory
and prints the highlighted report when the user selects OK. »

Comments
This property is optional, and can contain one of the following values:
 0 – Pick none (use report in ReportName property).
 1 – Pick one (allow user to select one report).
 2 – Pick many (allow user to select several reports).
If you set this property, you do not need to set the ReportName
property; if you include both ReportPick and ReportName values,
Viewer ignores the ReportName.
Set this property of 2 to have the Viewer prompt the user to select a
succession of reports. When the value is 2, Viewer will prompt the
user to select a report from those in the location specified by
ReportDirectory. After Viewer executes the selected report, the user
will then be prompted to select another report. This prompt for report
selection will repeat after each report until the user presses Esc.
Set this property to 1 to prompt the user to select just one report. When
the value is 1, Viewer will prompt the user to select a report (as with
the 2 value), but will not prompt for an additional report selection after
the report has been executed.

Data Type
Integer (Enumerated)

Availability
Design time; Run time

ResetControl
Description
Causes the control to reset all properties to their default states.

Usage
[form].ControlName.ResetControl()

Chapter 5

164 Developing Applications, SQL Edition

Example
RSReport1.ResetControl()

Comment
Use this method at report execution to clear all non-default values. It
can be used to reset the control to a known state.

Data Type
Void

Availability
Design Time

ResetProperties
Description
Controls whether the OCX should reset its properties when a new
report is specified.

Usage
[form].ControlName.ResetProperties[= {TRUE|FALSE}]

Example
RSReport1. ResetProperties = TRUE

Comment
Use this property to clear out values of a prior report. This setting
causes all properties, except the properties visible from the General tab
dialog, to be reset to their default states.

Data Type
Integer (Boolean)

Availability
Design time; Run time

RunReport
Description
RunReport is a method that can be used to trigger the print, display, or
export of the report.

 Using The Custom Control

Developing Applications, SQL Edition 165

Usage
[form.]ControlName.RunReport(action)

Example
RSReport1.RunReport(1)

« Prints, displays, or exports the report, depending on the Destination
property, and does not return until the report is completed. »

Comments
Use a value of 1 or 2 in for RunReport to print, display, or export the
report in response to a user event. In most cases, it will be more
convenient to set this property to 1.
If set to 1, the action is synchronous, which means that the next line of
Visual Basic procedure code will not execute until the report is
completed. The status of the report will be returned in the
LastErrorCode, LastErrorString, and LastErrorPage properties.
If set to 2, the action is asynchronous, so that the report may still be
running when the next line of Visual Basic procedure code is executed.
When the report completes, its status is written into the status file.

Availability
Run time

SortFields
Description
Specifies the field(s) that are to be used to sort your data when the
report is printed.

Usage
[form.]ControlName.SortFields(ArrayIndex)[= "+|-SortField$"]

Example
RSReport1.SortFields(0) = "+CUST.LNAME"

Comments
Sort fields can be database fields, calculated fields or total fields.
When setting this property at run time, use a separate line of code to
specify each sort field. The first sort field you specify must be assigned
array index 0, the second sort field must be assigned array index 1, etc.

Chapter 5

166 Developing Applications, SQL Edition

The index values you assign must be continuous; no gaps are allowed
(0,1,2 would be correct, but 0,1,3 would be wrong).

Data Type
Array of strings

Availability
Run time

SortFieldsString
Description
Specifies the field(s) that are to be used to sort your data when the
report is printed.

Usage
[form.]ControlName.SortFieldsString[= "+|-SortField$"]

Example
RSReport1.SortFieldsString = "+CUST.LNAME"

Comments
Sort fields can be database fields, calculated fields or total fields.
At design time, you can change this property array in two ways:

 Double-click this property to display the Sort property page.
Clicking on the down arrow next to each sort field will drop
down a list of all fields used in the report from which you can
select.

 Enter the sort field names separated by semicolons. If you want
to override some sort fields, but not all of them, you must use a
semicolon as a place-holder. For example, to change the first
and third sort field, you would enter “Division;;Region”.

Data Type
String

Availability
Design time

 Using The Custom Control

Developing Applications, SQL Edition 167

StartPage
Description
Specifies the page of the report to start printing.

Usage
[form.]ControlName.StartPage[= Page%]

Example
RSReport1.StartPage = 10

« Specifies that the report should start printing at page 10. »

Comments
This property is optional. The StartPage and EndPage properties allow
you to override the starting and ending page numbers saved with the
report. The default value for these properties is blank.
To specify page numbers, include a StartPage value, an EndPage
value, or both. If you specify both, EndPage must be equal to or greater
than StartPage. For example, users can restart a canceled report where
it was interrupted by specifying the starting page number as the
StartPage value and 999999999 as the EndPage value. To reprint one
or more consecutive pages of a report, specify the page numbers in the
StartPage and EndPage properties. To print just one page, specify the
same page number for both properties.

Data Type
Integer

Availability
Design time; Run time

StatusFileName
Description
Specifies the name and, optionally, the path for the status file.

Usage
[form.]ControlName.StatusFileName[=StatusFileName$]

Chapter 5

168 Developing Applications, SQL Edition

Example
RSReport1.StatusFileName = "C:\TEMP\STATUS.TXT"

« Writes the status information into a file named STATUS.TXT in the
TEMP directory on drive C. »

Data Type
String

Availability
Design time; Run time

SuppressTitle
Description
Specifies whether to suppress Title and Summary lines for a report that
contains no records.

Usage
[form.]ControlName.SuppressTitle[={TRUE|FALSE}]

Example
RSReport1.SuppressTitle = FALSE

« Title and Summary lines will be printed even when no records are
found. »

Comments
Set SuppressTitle to TRUE to suppress printing of Title and Summary
lines if the report contains no records.

Data Type
Integer (Boolean)

Availability
Design time; Run time

 Using The Custom Control

Developing Applications, SQL Edition 169

TestPattern
Description
Specifies whether or not to print a test pattern showing the layout of
the report on the page.

Usage
[form.]ControlName.TestPattern[= {True|False}]

Example
RSReport1.TestPattern = True

« Specifies that a test pattern of the report should be printed. »

Comments
This property is optional, and can be either True or False. True means
to display a prompt before printing the report to allow the user the
option of printing a test pattern. False means don’t offer a choice to
print a test pattern.
A test pattern is useful for aligning forms in the printer. The user can
print the test pattern as many times as necessary and then print the
report. If you enter True, the Viewer displays a box containing OK,
Cancel, and Print buttons. The user can select OK and print as many
test patterns as necessary to align the forms. Once the forms are
aligned, the user can select Print to begin printing the actual report.

Data Type
Integer (Boolean)

Availability
Design time; Run time

UpdateControl
Description
Specifies whether the properties of the control should be updated with
the properties of the report when a new report is selected.

Usage
[form.]ControlName.UpdateControl[= {True|False}]

Chapter 5

170 Developing Applications, SQL Edition

Comments
Set this property to True if you want the current properties to reflect
the current report.

Data Type
Integer

Availability
Design time; Run time

UserName
Description
The user name for logging on to a SQL database.

Usage
[form.]ControlName.UserName[= Name$]

Example
RSReport1.UserName = "RSmith"

« Enters the user name “RSmith.” »

Comments
If a valid password and user name are not provided, the user will be
prompted to enter them when the report is run.

Data Type
String

Availability
Run time

Where
Description
Modifies the WHERE clause of the SQL statement in an Auto-SQL
report.

Usage
[form.]ControlName.Where [= WhereClause$]

 Using The Custom Control

Developing Applications, SQL Edition 171

Example
RSReport1.Where = "(dbo.students.PROGRAM = ‘ELEC’)"

« Changes the WHERE clause in the SQL statement to be “WHERE
(dbo.students.PROGRAM = ‘ELEC’)”. »

Comments
The optional Where property enables the Viewer to insert a WHERE
clause in the SQL statement for an Auto-SQL report. If you or your
users are proficient in SQL, you may want to use this property instead
of Filter and Include to select records. Since the WHERE clause is
evaluated directly by the SQL software, using the Where property can
improve performance and enable you to make use of any WHERE clause
supported by your SQL software.
The WHERE clause specified with this property always affects the
report, regardless of whether a filter was saved with the report. If you
have also used the Filter and Include properties to select records, the
effect of the Where property is as follows:

 If Include is “0 – Saved”, both the filter saved with the report
and the clause in Where are used to select records.

 If Include is “2 – Override”, both the filter expression in Filter
and the clause in Where are used to select records.

 If Include is “1 – Entire,” only the Where clause is used to
select records.

 If Include is “3 – Prompt user” to allow the user to enter a filter
interactively, both the user’s filter expression and the WHERE
clause are used to select records.

Note that Where values are not applied to User-SQL reports. To
override the selection conditions for a User-SQL report, use the
Replace property.

Data Type
String

Availability
Design time; Run time

Chapter 5

172 Developing Applications, SQL Edition

WindowBorderStyle
Description
Specifies the type of border for the preview window.

Usage
[form.]ControlName.WindowBorderStyle[= BorderStyle%]

Example
RSReport1.WindowBorderStyle = 2

« Sets a sizable border style for the preview window. »

Comments
Set this property to one of the following border styles if you are
printing to a preview window (if Destination = 1).

1 – Fixed (a window of a fixed size with a standard border);
2 – Sizable (a window that can be resized by the user).

Note that for compatibility with earlier versions of R&R, this
parameter accepts any of the following values:

 0 (which formerly resulted in a borderless preview window)
results in a fixed-size window with a standard border.

 1 results in a fixed-size window with a standard border.
 2 results in a variable-size window with a standard border.
 3 (which formerly resulted in a fixed-size window with a

double-line border) results in a fixed-size preview window with
a standard border.

Data Type
Integer (Enumerated)

Availability
Design time; Run time

 Using The Custom Control

Developing Applications, SQL Edition 173

WindowControlBox
Description
Specifies whether the preview window is to have a control (system
menu) box in the upper left hand corner when the report is displayed in
a preview window.

Usage
[form.]ControlName.WindowControlBox[= {True|False}]

Example
RSReport1.WindowControlBox = True

« Specifies that a control box (system menu) is to appear in the
preview window. »

Comments
Set this property to True if you are printing to a preview window (if
Destination = 1) and if you want the window to contain a control box.

Data Type
Integer (Boolean)

Availability
Design time; Run time

WindowHeight
Description
Sets the height of the preview window when the report is displayed in
a preview window.

Usage
[form.]ControlName.WindowHeight[= Height%]

Example
RSReport1.WindowHeight = 300

« Sets the height of the preview window to 300 pixels, or about 3
inches on most displays. »

Chapter 5

174 Developing Applications, SQL Edition

Comments
The value for this property is expressed in pixels. Set this property if
you are printing to a preview window (if Destination = 1).

Data Type
Integer

Availability
Design time; Run time

WindowLeft
Description
Sets the distance, in pixels, that the preview window is to appear from
the left edge of the screen.

Usage
[form.]ControlName.WindowLeft[= Distance%]

Example
RSReport1.WindowLeft = 100

« Sets the left edge of the preview window 100 pixels from the left
edge of the screen, about one inch on most displays. »

Comments
The value for this property is expressed in pixels. Set this property if
you are printing to a preview window (if Destination = 1).

Data Type
Integer

Availability
Design time; Run time

WindowMaxButton
Description
Specifies whether the preview window is to have a maximize button
when the report is displayed in a preview window.

 Using The Custom Control

Developing Applications, SQL Edition 175

Usage
[form.]ControlName.WindowMaxButton[= {True|False}]

Example
RSReport1.WindowMaxButton = False

« Specifies that no Maximize button is to appear in the preview
window. »

Comments
Set this property to True if you are printing to a preview window (if
Destination = 1), and you want the window to contain a maximize
button.

Data Type
Integer (Boolean)

Availability
Design time; Run time

WindowMinButton
Description
Specifies whether or not the preview window is to have a minimize
button when the report is displayed in a preview window.

Usage
[form.]ControlName.WindowMinButton[= {True|False}]

Example
RSReport1.WindowMinButton = True

« Specifies that a Minimize button is to appear in the preview
window. »

Comments
Set this property to True if you are printing to a preview window (if
Destination = 1) and you want the window to contain a minimize
button.

Data Type
Integer (Boolean)

Chapter 5

176 Developing Applications, SQL Edition

Availability
Design time; Run time

WindowTitle
Description
Specifies the title you want to appear in the preview window title bar
when the report is displayed in a preview window.

Usage
[form.]ControlName.WindowTitle[= Title$]

Example
RSReport1.WindowTitle = "Revenue Summary"

« Sets the title of the preview window (the string that appears on the
title bar) to “Revenue Summary.” »

Comments
This property is optional. Set this property if you are printing to a
preview window (if Destination = 1), to specify a report title (for
example, “Quarterly Profits”) to be displayed in the following places:

 The Title Bar of the Preview window;
 The Print Status window (if DisplayStatus = True);
 The title bars of the dialog box that displays when the Printer or

Port value is a question mark.
If this property is blank, the report name will be used for the title.
When setting this property at run time, enclose the title in quotes.

Data Type
String

Availability
Design time; Run time

WindowTop
Description
Sets the distance, in pixels, that the preview window is to appear from
the top edge of the screen.

 Using The Custom Control

Developing Applications, SQL Edition 177

Usage
[form.]ControlName.WindowTop[= Distance%]

Example
RSReport1.WindowTop = 100

« Sets the top edge of the preview window 100 pixels from the top of
the screen, or about one inch on most displays. »

Comments
The value for this property is expressed in pixels. Set this property if
you are printing to a preview window (if Destination = 1).

Data Type
Integer

Availability
Design time; Run time

WindowWidth
Description
Specifies the width of the preview window in pixels.

Usage
[form.]ControlName.WindowWidth[= Width%]

Example
RSReport1.WindowWidth = 500

« Specifies a preview window 500 pixels wide, or about five inches on
most displays. »

Comments
The value for this property is expressed in pixels. Set this property if
you are printing to a preview window (if Destination = 1).

Data Type
Integer

Availability
Design time; Run time

Chapter 5

178 Developing Applications, SQL Edition

Developing Applications, SQL Edition 179

Chapter 6
R&R ReportScript
Introduction

R&R provides an open architecture for report generation. Called
“ReportScript,” this new architecture allows developers to create
application-specific reporting front ends that use Report Designer’s
sophisticated reporting engine for actual report generation.
ReportScript allows any developer who can generate text files to
communicate effectively with Report Designer.
There are two ways in which you may take advantage of the
ReportScript interface to generate a report. The Report Wizards make
use of this script mechanism to pass a user-specified report
specification from the Report Wizards to the Report Designer
executable. In order to provide a custom interface for report creation,
developers may configure Report Designer to integrate their own
Windows executable (EXE) in place of the R&R Wizard application
In addition to the Report Wizard interface, a report can be generated by
passing a script file pathname on the Report Designer command line.
When Report Designer is invoked in this way the script file is read and
the report is created automatically. Passing a script file on the
command line requires that a master table pathname be specified in the
Report section of the script file. See the Script File Format section of
this chapter for more information about the script file.
Explanation of ReportScript is presented in the following sections:

• Custom Report Wizards
• Script File Format
• Script Command-Line Argument (/S)
• Report Wizard Input File

Chapter 6

180 Developing Applications, SQL Edition

Custom Report Wizards
The ReportScript interface allows developers to integrate their own
intelligent front ends to their applications. Through this mechanism
you can provide a custom user interface to gather the information
needed to generate a report. As you will see, integrating your own
custom user interface into Report Designer is very simple.
You can also use a ReportScript file to generate reports with the
Viewer. You can create a script file and have it executed by the Viewer
to define and run a new report. To do so, you would supply the script
file name to the Viewer in any of the following ways:

• as the RI_REPORT field value in a Viewer control file;
• as an argument to the chooseReport function of the Viewer

DLL;
• as an element of the ReportName property of the custom

control.

Configuring the Custom Application
To replace the Wizards program with your own, simply add the
following settings to the initialization file (RSW.INI) located in your
Windows directory:

 [Special]
 WizardEXE=C:\RR\MYWIZARD.EXE
If the [Special] section already exists, add the WizardEXE keyword
to the existing section.
Note that if a full pathname is not specified for the executable file,
Windows will search for it in the following order:
1. Current directory;
2. Windows directory;
3. Windows system directory;
4. The R&R program directory;
5. The DOS path;
6. Directories mapped on a network.
To restore the built-in Report Wizards, simply remove the
WizardEXE setting from the initialization file.

 ReportScript

Developing Applications, SQL Edition 181

Invoking the Custom Application
As is the case with the built-in Report Wizards, a custom application is
invoked from either the Report Designer startup dialog or from the File
New dialog. (Note that the Options ⇒ Preferences dialog provides
“File New” settings that allow these dialogs to be bypassed). After you
select Report Wizards and choose a database table, Report Designer
immediately invokes the application specified in the initialization file.
While the custom application is active, Report Designer is disabled; it
is enabled when the custom application terminates.
Three arguments are passed to the custom application on the command
line. The arguments are separated by semicolons (;). The first argument
is the pathname to an “input file” containing information used by the
Wizards. The second argument is the pathname to the script file in
which the report information is to be written. The third argument is the
master database table selected within Report Designer. (For desktop
database platforms such as Paradox or Xbase, this argument is a
complete pathname, including drive specifier. For SQL platforms, this
argument is a table name, including database qualifier if the SQL
engine allows a database override.) The master table passed on the
command line must be used by the custom application as the basis for
report generation.
The script file is read by Report Designer when the custom application
terminates. After validating the contents of the script file, Report
Designer generates the report and performs any actions specified, such
as performing a print preview of the report. Report Designer will
indicate any errors detected by displaying an error message box
identifying the invalid line in the file.

Script File Format
The ReportScript file format is similar to that of a Microsoft Windows
initialization (INI) file. Script files are made up of a series of sections
that contain keyword definitions. However, these script files may
contain duplicate keywords in the same section, which is generally not
the case with Windows initialization files.
These are the general rules that apply to the format of script files:

 Commas are used to separate data on a given line. Therefore
field names may not contain commas; in addition, decimal

Chapter 6

182 Developing Applications, SQL Edition

values (field locations, margins, etc.) must always use a period
as the decimal point and all dimensions are in inches.

 Blank lines or lines beginning with a semicolon (considered
comment lines) are ignored.

 The maximum line length is 300 characters. Line continuation
is not supported.

 All Boolean values are set by specifying either T or F.
 Missing parameters that are optional, such as margins or page

size, will be set to default report values. Missing database field
length parameters will be set to the values stored in the
database table.

 All field definitions specified will be inserted on the report
layout.

 All field location values are defined in hundredths of an inch.
Values are specified as absolute (1.00) or relative (+1.00).
Relative field locations are based on the end of any previously
defined field on the line. Absolute column positions should be
computed based on the Pitch specification in the [System]
section of the input file. (Note that you should take into account
the left margin setting when defining field locations — for
example, if the left margin is 0.5 inches and field location value
is 1.00, the field will be placed 1.50 inches from the left edge
of the page.)

 Field alignment is specified by numeric values ranging from
zero to five: 0=Left; 1=Center; 2=Right; 3=Wrap Left;
4=Wrap Right; 5=Wrap Fully Justified. Values 0 through 2
may be applied to any field. Values 3 through 5 may be applied
only to character, memo or logical fields.

 Field locations are based on field alignment. The location for a
left-aligned field is the left edge of the field. The location for a
right-aligned field is the right edge of the field. The location for
a center-aligned field is the center of the field. The maximum
field location is 25.00.

 Page margin values are defined in hundredths of an inch.
 Lines within a particular band must be specified in the order in

which they are to appear in the report.
 Calculations and totals must be defined prior to reference by

other fields. Calculated and total field names must be unique.

 ReportScript

Developing Applications, SQL Edition 183

 Optional field style is specified as a combination of the letters
BUIS, which can be combined to indicate Bold, Italic,
Underscore and Strikeout.

 Total field expressions are specified by separating the four
required parameters by commas: Type, Reset, Accumulation,
Running.

 Commas are used as place holders and may be omitted when
defaulting trailing parameters on a line.

 Scripts passed to R&R via the /S command-line argument must
supply a master table name in the REPORT section.

The following section provides a breakdown of the script file support
in this version of R&R.

Script File Sections and Keywords
The report sections and keywords used in this version of Report
Designer are indicated below. All sections and keywords are optional,
with the exception of the Report section, which is required when a
script file is passed to Report Designer on the command line. This
section is ignored if specified in a script file generated by a custom
application that replaces the Report Wizards.

REPORT SECTION
[Report]
MasterTable=tablename

If Report Designer is called with a script file as a command-line
argument, the MasterTable argument is used as the table from the
specified database to generate the report described in the remainder of
the script file.

ACTION SECTION
ReportScript currently supports two menu “actions.” These optional
commands allow for printing or previewing the report immediately
after it is generated. Only one menu action should be specified for
each script. If more than one action is specified, only the first one
will be performed.

[Actions]
Menu=FilePrint
Menu=FilePrintPreview

Chapter 6

184 Developing Applications, SQL Edition

PAGE FORMAT SECTION
[PageFormat]
PageSize=(0: Letter; 1: Legal; 2: Executive; 3: A4)
TopMargin=(Inches)
BottomMargin=(Inches)
LeftMargin=(Inches)
RightMargin=(Inches)
Landscape=(T or F)
InterlineSpacing=(T or F)
PreviewZoom=(0: Minimum; 1: Mid-level; 2: Maximum)

RECORD FORMAT SECTION
[RecordFormat]
AveryLabel=(Label Name)
RecordsAcross=(1 to 99)
RecordWidth=(Inches)
RecordHeight=(Inches)
PrintColsAcross=(T or F)
CompressRecordGroup=(T or F)
SuppressRecordLines=(T or F)
BeginLineOnSemi=(T or F)
HeadFootSummary=(T or F)
BreakRecordArea=(T or F)

SORT SECTION
Sort levels must be declared in contiguous order (no gaps). Sort
fields will be copied to group fields up until an existing group field
definition (see below) is encountered. Setting “SortOrderN=T”
indicates ascending order.

[Sort]
SortField1=FieldName
SortOrder1=(T or F)
 through:
SortField8=FieldName
SortOrder8=(T or F)

 ReportScript

Developing Applications, SQL Edition 185

GROUP SECTION
Group fields must be declared in contiguous order (no gaps).

[Group]
GroupField1=FieldName
 through:
GroupField8=FieldName

BAND LINE SECTION
Band lines are created by placing band sections into the script file.
One band line will be created for each band line section that is
entered. Fields are positioned on each line by placing the field
definition keywords (described below) within the appropriate band
line section.

[Title]
[PageHeader]
[GroupHeader1] through [GroupHeader8]
[Record]
[GroupFooter1] through [GroupFooter8]
[PageFooter]
[Summary]
FIELD DEFINITION KEYWORDS
The following field definition keywords must be placed within the
appropriate band line section. Field definitions are indicated by a
leading keyword, such as “CharField=,” followed by a series of
parameters separated by commas.
In the following example of a character field definition to be placed
on a Record line, field name is CUSTNAME; field trim is True; field
location is 1.00 inch; alignment is left; style is Underscored; and
length is zero (i.e., use the field length specified in the master table.
Example: [Record]
 CharField=CUSTNAME, T, 1.00, 0, U, 0
DATABASE CHARACTER FIELD
CharField=Name (required),
 Trim (T or F),
 Location,
 Alignment,

Chapter 6

186 Developing Applications, SQL Edition

 Style (BUIS),
 Length
DATABASE NUMERIC FIELD
NumField=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Integers,
 Decimals,
 Numeric picture:
 0: Fixed; 1: Scientific; 2: Currency; 3: Comma; 4: General;
 5: Percent
DATABASE DATE FIELD
DateField=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Date picture:

0: dd-mmm-yy 12: dd/mm/yy
1: dd-mmm-yyyy 13: dd/mm/yyyy
2: dd-mmm 14: dd.mm.yy
3: mmm-yy 15: dd.mm.yyyy
4: mmm-yyyy 16: yy-mm-dd
5: mmmm d, yyyy 17: yyyy-mm-dd
6: d mmmm yyyy 18: mm/dd
7: mmmm yyyy 19: dd/mm
8: mmmm d 20: dd.mm
9: d mmmm 21: mm-dd
10: mm/dd/yy 22: Long Regional
11: mm/dd/yyyy 23: Short Regional

DATABASE DATE/TIME FIELD
DateTimeField=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),

 ReportScript

Developing Applications, SQL Edition 187

 Date picture:
0: dd-mmm-yy 12: dd/mm/yy
1: dd-mmm-yyyy 13: dd/mm/yyyy
2: dd-mmm 14: dd.mm.yy
3: mmm-yy 15: dd.mm.yyyy
4: mmm-yyyy 16: yy-mm-dd
5: mmmm d, yyyy 17: yyyy-mm-dd
6: d mmmm yyyy 18: mm/dd
7: mmmm yyyy 19: dd/mm
8: mmmm d 20: dd.mm
9: d mmmm 21: mm-dd
10: mm/dd/yy 22: Long Regional
11: mm/dd/yyyy 23: Short Regional

 Time picture:
0: h:mm
1: hh:mm
2: h:mm:ss
3: hh:mm:ss
4: h:mm am
5: hh:mm am
6: h:mm:ss am
7: hh:mm:ss am
8: International

DATABASE TIME FIELD
TimeField=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Time picture:

0: h:mm
1: hh:mm
2: h:mm:ss
3: hh:mm:ss
4: h:mm am
5: hh:mm am
6: h:mm:ss am
7: hh:mm:ss am
8: Regional

Chapter 6

188 Developing Applications, SQL Edition

TEXT FIELD
TextField=Text (required, placed within double quotes),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS)

CALCULATION CHARACTER
CalcChar=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Length (required),
 Expression:
 Calculated Field: Standard expression format (within double
 quotes), or
 Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulation Running
0: Count G: Grand A: Automatic T (Running)
3: Minimum P: Page E: Every F (Preprocessed)
4: Maximum 1-8: Group P: Page
 1-8: Group

CALCULATION NUMERIC
CalcNum=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Integers (required),
 Decimals (required),
 Numeric picture:
 0: Fixed; 1: Scientific; 2: Currency; 3: Comma; 4: General;
 5: Percent
 Expression:
 Calculated Field: Standard expression format (within double
 quotes), or
 Total Field: Type, Field, Reset, Accumulation, Running

 ReportScript

Developing Applications, SQL Edition 189

Type Reset Accumulation Running
0: Count G: Grand A: Automatic T (Running)
1: Sum P: Page E: Every F (Preprocessed)
2: Average 1-8: Group P: Page
3: Minimum 1-8: Group
4: Maximum
5: Standard
Deviation

6: Variance

CALCULATION DATE
CalcDate=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Picture (see DATABASE DATE FIELD above)
 Expression:
 Calculated Field: Standard expression format
 (within double quotes)
 or,
 Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulation Running
0: Count G: Grand A: Automatic T (Running)
3: Min P: Page E: Every F (Preprocessed)
4: Max 1-8: Group P: Page
 1-8: Group

CALCULATION DATE/TIME
CalcDateTime=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Date picture (see DATABASE DATE/TIME FIELD above)
 Time picture (see DATABASE DATE/TIME FIELD above)
 Expression:
 Calculated Field: Standard expression format
 (within double quotes)

Chapter 6

190 Developing Applications, SQL Edition

 or,
 Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulation Running
0: Count G: Grand A: Automatic T (Running)
3: Min P: Page E: Every F (Preprocessed)
4: Max 1-8: Group P: Page
 1-8: Group

CALCULATION TIME
CalcTime=Name (required),
 Trim (T or F),
 Location,
 Alignment,
 Style (BUIS),
 Time picture (see DATABASE TIME FIELD above)
 Expression:
 Calculated Field: Standard expression format (within double
 quotes)
 or,
 Total Field: Type, Field, Reset, Accumulation, Running

Type Reset Accumulation Running
0: Count G: Grand A: Automatic T (Running)
3: Min P: Page E: Every F (Preprocessed)
4: Max 1-8: Group P: Page
 1-8: Group

POINTSIZE
PointSize=Size in points
R&R ReportScript uses the default point size set in Options ⇒ Default
Settings for all fields. You can use the PointSize keyword to specify a
new point size. Include the PointSize keyword in any Band Line
Definition section to set a point size for all subsequent fields specified
until another PointSize keyword is encountered.

 ReportScript

Developing Applications, SQL Edition 191

In the following example, PointSize=16.0 changes the point size to 16
for the DEPARTMENT text field and to 14 for the FULLNAME field.
PointSize=0 then returns the point size to the default for the SALARY
field.

;BAND LINE DEFINITION SECTION
[PageHeader]
PointSize=16.0
TextField="DEPARTMENT", F,0.0, 0, U
PointSize=14.0
TextField="FULLNAME", F,2.5, 0, U
PointSize=0
TextField="SALARY", F,6.0, 2, U

Sample Script Output
A sample label script generated by the Report Wizards is shown on the
following page. Although the script is relatively simple, it generates a
fully formatted report containing report parameters such as sort and
group information, various report bands, total fields and calculated
fields. Note that the [Group] section is not required, since the group
settings are automatically copied from the sort settings. Because the
FilePrintPreview keyword has been specified as the menu action in
the [Actions] section, the report will be previewed automatically after
it has been generated.
; REPORT SECTION
MasterTable=employee

; ACTION SECTION
[Actions]
Menu=FilePrintPreview

; PAGE FORMAT SECTION
[PageFormat]
PageSize=0
TopMargin=.5
BottomMargin=.5
LeftMargin=.5
RightMargin=.5

; BAND LINE DEFINITION SECTION
[Title]
TextField="DBRSAMPL", F, 0.00, 0
TextField="*** Grouped Columnar Report ***",F,3.75,1
CalcChar=wizDate,F,7.5,2,,8,"DTOC(date())"
[Title]
[GroupHeader1]
CharField=DEPARTMENT,F,0.0,0,BI

Chapter 6

192 Developing Applications, SQL Edition

[GroupHeader1]
TextField="DEPARTMENT",F,0.0,0,BU
TextField="FULLNAME",F,1.7,0,BU
TextField="HIRE_DATE",F,4.5,1,BU
TextField="SALARY",F,6.0,2,BU
[Record]
CharField=DEPARTMENT,F,0.0
CharField=FULLNAME,F,1.7
DateField=HIRE_DATE,F,4.5,1
NumField=SALARY,F,6.0,2
[PageFooter]
[PageFooter]
TextField="Page ",F,3,1,B
CalcNum=wizPage,T,4.5,2,B,3,0,0,"PageNo()"
[GroupFooter1]
CalcNum=wizGpTot3,F,6.0,2,,,,0,2,SALARY,1,A,T
[Summary]
CalcNum=wizGrTot3,F,6.0,2,,,,0,2,SALARY,G,A,T

; SORT SECTION
[Sort]
SortField1=DEPARTMENT
SortField2=FULLNAME

Script Command-Line Argument (/S)
A script file may be passed on the Report Designer command line by
appending the pathname of the script file to the /S switch:
 /SC:\RR\SCRIPT.TXT
When Report Designer starts, the script file will be opened and
validated. If no errors are encountered the report will be generated and
any actions requested, such as previewing the report, will be
performed.
Note: When a script file argument is passed to Report Designer,
command line arguments /L (library path), /R (report name), /T (table
name) and /I (table name/instant report) are ignored.

 ReportScript

Developing Applications, SQL Edition 193

Report Wizard Input File
Report Designer creates a temporary input file that is used by the
Wizards. This input file contains information that is useful to users of
the ReportScript interface. The input file format is similar to that of a
Microsoft Windows initialization (INI) file. These files are made up of
a series of sections that contain keyword definitions.
Although the information passed in the input file is used by the Report
Wizards, this file may be ignored by any custom application.
The sections and keywords placed in the input file are indicated below.
Some sections and keywords will always be present, others are
optional and depend on the number of records in the table passed to the
Wizards.
[System]
Product=1 (RSW)
Pitch=12 (Pitch of default font)
PageWidth=7.50 (Default page width minus left and right
margins)

The TableDef section lists the supported database fields in the table
passed on the command line, including the data type and field lengths.
For numeric fields, the integer and decimals places are specified. The
data types are as follows:
 0: Character
 1: Numeric
 2: Date
 3: Logical
 4: Memo
 5: Date/Time
 6: Time
The following is a sample TableDef section for a master table
containing six fields. Note that the VALUE field is a numeric field and
includes integer and decimal places instead of a single field length.

[TableDef]
NAME=0,21
STREET=0,17
CITY=0,12
STATE=0,2

Chapter 6

194 Developing Applications, SQL Edition

ZIP=0,5
VALUE=1,5,0
Up to twenty rows of result data from the table passed to the Report
Wizards are included in the input file. Each of these records is placed
in a separate section, labeled Row1 through Row20. Data in each field
is truncated to 50 characters. Below are samples of two rows from the
database table described above.
[Row1]
NAME=Ashley, Steve
STREET=100 Main St
CITY=Westboro
STATE=MA
ZIP=01581
VALUE=38500

[Row2]
NAME=Axelhouse, Jim
STREET=201 Oak Ave
CITY=Northboro
STATE=MA
ZIP=01532
VALUE=25500

Developing Applications, SQL Edition 195

Chapter 7
Interfacing to Application DLLs
Introduction

R&R Report Designer includes a special function, CDLL(), that
allows you to call a DLL-based function from a report. You might use
CDLL() when you want to write a DLL-based function to perform an
operation that Report Designer’s UDFs don’t support, such as a
trigonometric function. CDLL() also gives you access from reports to
functions that are used by other elements of your application, since
DLLs are available to all parts of a Windows application..

Syntax
CDLL() takes three string arguments and returns a string value. The
syntax is:

CDLL(string1,string2,string3)

where string1 is the name of the DLL that contains the function,
string2 is the name of the function, and string3 is an argument being
passed to the DLL function. You can use functions to convert the
argument from other data types and to return other data types. For
example, the calculated field expression

CDLL("CONVERTS.DLL","MILES_KILO",STR(DISTANCE))

uses the STR function to convert the decimal value of DISTANCE into
a character string and passes the string value to the MILES_KILO
function in CONVERTS.DLL, which converts miles to kilometers.
CDLL() expects a boolean return value from the called function: true
to indicate the function executed successfully, or false to indicate an
error. If the DLL returns a false value, CDLL() returns an error string.
If the DLL function executes successfully, it should overwrite its input
string with the output string to be returned by the CDLL() function.
The input and output strings are passed using an 8000-byte buffer.

Example
This example uses CDLL() to call the functions RR_SIN, RR_COS,
and RR_TAN from TRIGS.DLL. The functions are used to return the
sine, cosine, and tangent values of the field DEGREES.

Chapter 7

196 Developing Applications, SQL Edition

Since CDLL() takes an input string and produces an output string, we
first created three UDFs that take the value of DEGREES as a numeric
and return its value as a numeric. These values are converted to
character strings before being passed to TRIG.DLL. The three UDFs
and their declarations and formulas are:

SIN(N_DEGREES) =
 VAL(CDLL("TRIG.DLL","RR_SIN",STR(DEGREES,6,0)))
COS(N_DEGREES) =
 VAL(CDLL("TRIG.DLL","RR_COS",STR(DEGREES,6,0)))
TAN(N_DEGREES) =
 VAL(CDLL("TRIG.DLL","RR_TAN",STR(DEGREES,6,0)))

In each UDF formula, the STR function converts the numeric value of
DEGREES into a character string, as required for the third argument to
CDLL(). The second argument of STR specifies the character length
of the string.; the third argument specifies the number of decimal
places. The VAL function converts the string result of CDLL() into a
numeric representation, which is more useful for such functions.
Creating these UDFs allows you to supply the DEGREES argument as
a numeric value and return it as a numeric value; the conversion to
string representation and back is “hidden.” To use these UDFs to
access the DLL functions, you create calculated fields whose
expressions supply the DEGREES as numeric arguments. Note the
following:

 Although you can pass only a single argument to a DLL, that
string can contain multiple arguments that can be parsed by the
DLL function. The single string value returned by the function
can also contain multiple values that can be parsed within a
calculated field expression.

 If you use CDLL() in reports you plan to distribute for use with
the Viewer, make sure that the referenced DLLs are available
when the Viewer is executed.

Developing Applications, SQL Edition 197

Chapter 8
Distributing Reports
Introduction

You can distribute reports to users who have licensed copies of either
R&R Report Designer or R&R Viewer. You and your users must have
the same version of the Viewer, preferably the most recent one. Your
users must also have the required ODBC driver(s) and the appropriate
data source configuration(s) for access to the database files you
provide them.
Information about distributing reports is provided in the following
sections:

 Required Files for Report Distribution
 Distributing VB Applications
 Retrieving Report Files

Required Files for Report Distribution
Figure 8.1 lists files to be distributed in order to enable users to access
reports. You can specify locations for some of these files either with
command switches or with the Viewer control fields.
Note that R&R saves with each report the relevant data source
information and the location of tables, image files, and text memo
files. The Viewer will automatically find these files if they are
retrievable according to the search rules explained in the Retrieving
Report Files section. The Viewer will also look for these files in the
default directories specified on the Viewer command line or in the
RSW.INI file, if it is available. If the report files are not in either of
these locations, use the parameters in the Viewer control file to specify
file locations.
If you make RSW.INI available to users, it should be stored in the
user’s Windows directory. The UDF library file, RSW.UDF, and
RSWSQL.INI should be in the same directory as the Viewer
executable, RSWRUN.EXE.

Chapter 8

198 Developing Applications, SQL Edition

Note that if your users will be exporting reports to Excel PivotTable or
Excel Chart, they must have Excel 5.0 (or later) installed.

File Description Location
Report File(s) The report(s) to be run by the Viewer. Any directory
Data files The tables, indexes, text memo files, and

image files used by your reports (if your
users do not already have them). All data
files used by your report(s) are required.

Any directory

Control Table
or File

The database table or text file that
provides the Viewer with information
about the report(s) to be run.

Any directory

RSW.UDF User-defined function file. Required if
your reports use any user-defined
functions.

Program directory

RSW.INI The R&R configuration file; it is optional
and can be customized for different users.
If RSW.INI is in the Windows directory,
Viewer uses the defaults defined in that
file. However, command-line switches
take precedence; any setting you specify
using a command-line switch will always
override the corresponding RSW.INI
setting.

Windows directory

RSWSQL.INI Translation parameters for R&R
functions. Distribute this only if you have
modified it in some way.

Program directory

Figure 8.1 Report Distribution Files

Distributing VB Applications
You should use the Setup Wizard and Setup Toolkit that comes with
Visual Basic to create a setup program for distributing your VB
application. Refer to the Visual Basic documentation for information
about building a setup program for your application.
When presented with a list of files to be distributed with your
application, make sure that the required DLLs and OCXs are included
on this list.

 Distributing Reports

Developing Applications, SQL Edition 199

Retrieving Report Files
Before R&R will display or print a report, it must be able to find all the
database tables and other files used in the report, including any text
memo file, UDF library file, or image file attached to the report. R&R
follows the rules described in the following sections to save the
locations of database tables and files used in a report, and then to find
the tables and files when it retrieves the report. If you are developing
reports that will be retrieved from a location other than the one in
which they were saved, you should review these rules.

Client/Server Database Platforms
By client/server platforms we mean those platforms for which the
tables are physically or logically imbedded in databases, that is those
platforms for which there is no simple correspondence between tables
and DOS files. Examples of client/server platforms are SQL Server,
Oracle, and Netware SQL.
For client/server database platforms, R&R will look for tables in the
saved data source’s database. The data source name saved with a
report can be overridden via the Open Report dialog in interactive
R&R, or via runtime control parameters in the Viewer. Note that
standard ODBC behavior calls for a data source named “Default” to be
used if it exists and the saved or selected data source does not.

Desktop Database Platforms
R&R supports two sets of search rules for certain desktop platforms. In
the ODBC style, most emphasis is placed upon the concept of the data-
source directory. In the non-ODBC style, data-source directories play a
part, but the rules are also based on the locations of files relative to the
report library and master table.
ODBC-style search rules are always used for desktop platforms other
than Xbase or Paradox, and are used with Xbase and Paradox when the
setting UseCommonDlg=0 is present in the [Preferences] section of
RSW.INI, or if the UseCommonDlg setting is absent entirely. When
UseCommonDlg=0 or is absent, R&R mimics the client/server method
of table selection by presenting a list of tables associated with a given
data source. However, if the JoinAcrossDir setting for a given
driver/platform is 1, the table-selection dialog will allow you to select

Chapter 8

200 Developing Applications, SQL Edition

from lists of tables corresponding to directories other than the default
one for any data source using that driver.
The use of non-ODBC-style search rules applies only to Xbase and
Paradox and even then only if the setting UseCommonDlg=1 is present
in the [Preferences] section of RSW.INI. When UseCommonDlg=1,
R&R uses the ordinary Windows common file dialog for selecting
Xbase and Paradox data files.
Alternatively, you can make R&R strictly follow client/server behavior
for a given desktop driver/platform by setting JoinAcrossDir for the
driver/platform in RSWSQL.INI to 0. For Xbase and Paradox you
must also set UseCommonDlg to 0 in RSW.INI.
When retrieving a report, R&R uses the style of search rules implied
by the UseCommonDlg setting in effect at the time the report was
created or modified. However, if you resave a report that was
originally saved in one style after changing to the other style, the report
will be saved in the then-current style.

ODBC Style
In ODBC-Style reports, the search rules for the master table and for
related tables are as follows.

Master Table
If the master table was chosen from the default directory of its data
source and that data source still exists, the following search rules are
used:
A. R&R looks in the current default directory of the data source.
B. R&R looks in the directory from which the table was originally

selected.
C. R&R looks in the default data directory specified in RSW.INI.
If the master table was not in the default directory of its data source
and that data source still exists, the following search rules are used:
A. R&R looks in the directory from which the table was originally

selected.
B. R&R looks in the current default directory of the data source.
C. R&R looks in the default data directory specified in RSW.INI.

 Distributing Reports

Developing Applications, SQL Edition 201

If the data source from which the master table was chosen does not
still exist, you will be unable to retrieve the report without using an
alternate data source.

Related Tables
If a related table was chosen from the default directory of its data
source and that data source still exists, the following search rules are
used:
A. R&R looks in the current default directory of the data source.
B. R&R looks in the directory from which the table was originally

selected.
C. R&R looks in the current default directory of the data source

containing the master table.
D. R&R looks the default data directory specified in RSW.INI.
If a related table was not chosen from the default directory of its data
source and that data source still exists, the following search rules are
used:
A. R&R looks in the directory from which the table was originally

chosen.
B. R&R looks in the current default directory of the data source.
C. R&R looks in the current default directory of the data source

containing the master table.
D. R&R looks the default data directory specified in RSW.INI.
If the data source from which the related table was chosen does not
still exist, R&R will allow you to select an alternate data source.

Non-ODBC Style
In the following rules, “data source” directory is the default directory
associated with a data source; “master” drive/directory is the
drive/directory in which the master table is currently located; “default”
drive is the drive where the default data directory is located; and
“saved” drive/directory/file name is the drive, directory and file name
of any file as it was when the report was last saved.

Chapter 8

202 Developing Applications, SQL Edition

Master Table
R&R looks in the following places for the master table. Note that some
of the search rules are provisional — they do not apply in all cases. If a
particular search rule does not apply in retrieving the current report,
R&R simply goes on to the next search rule. Of course, once R&R
locates the master table via one of the search rules, it stops applying
them; it does not check to see if the master table also exists in other
directories.
A. If the master table was in the data-source directory when the report

was saved, R&R begins by searching in the current data-source
directory.

B. If the master table was in the directory containing the report
library, R&R looks in the drive/directory in which the report
library is currently located.

C. R&R looks in the saved drive/saved directory of the master table.
D. If the master table was not in the data-source directory when the

report was saved, R&R looks in the current data-source directory.
E. R&R looks in the default drive/default directory.

Related Tables
When you save a report, R&R follows a set of rules to save the name
of each related table. In the following rules, assume that the master
table is in C:\DIR1.
A. If the related table was in the data-source directory when the report

was saved, R&R looks in the current data-source directory.
B1. If the file’s drive and directory are the same as the master drive and

directory, R&R saves only the file name in the report definition.
For example, if the full path and name of a related table is
C:\DIR1\TABLE1, R&R saves only TABLE1.

 When the report is retrieved, R&R tries to locate required files by
searching:

 C1. master drive/master directory/saved file name
 D1. data-source directory, if not already searched in rule 1
 E1. default drive/default directory/saved file name.

 Distributing Reports

Developing Applications, SQL Edition 203

B2. If the file’s drive is the same as the master drive, but the directories
differ, R&R saves both the file name and the directory. For
example, if a report uses a table in C:\DIR2 and the file name is
TABLE2, R&R saves \DIR2\TABLE2.

 When the report is retrieved, R&R tries to locate required files by
searching:

 C2. master drive/saved directory/saved file name
 D2. master drive/master directory/saved file name
 E2. data-source directory, if not already searched in rule 1
 F2. default drive/default directory/saved file name
B3. If the file’s drive differs from the master drive, R&R saves the

entire path and file name. For example, if the report uses a table
whose name is D:\DIR3\TABLE3, R&R saves D:\DIR3\TABLE3.

 When the report is retrieved, R&R tries to locate required files by
searching:

 C3. saved drive/saved directory/saved file name
 D3. master drive/master directory/saved file name
 E3. data-source directory, if not already search in rule 1
 F3. default drive/default directory/saved file name.

Text Memo Files
When you save a report, R&R saves the complete path and name of
any attached text memo file. When you retrieve a report that uses such
a file, R&R first looks for the file in the drive/directory saved with the
report. It next looks in the default data directory specified in RSW.INI.

Image Files
When you save a report, Report Designer records whether the image
was saved in the same directory as the report. If it was, the image file
is searched for in the directory that contains the current report. If the
image was not saved in the same directory as the report, the image file
is searched for in the directory that contained it when the report was
saved. If Report Designer does not find the image in the report
directory or the saved directory, it will look in the default image
directory. If the Viewer does not find the image file in the report or
saved directory, it will search the default image directory specified in
the RSW.INI file or identified with the /I switch.

Chapter 8

204 Developing Applications, SQL Edition

Consistency Checking
When a report is retrieved, R&R checks to see whether the saved
report is consistent with the current table definition. R&R will notify
you of discrepancies between the report and the tables it uses. For
example, R&R checks to see whether you have changed the column
names in any of the tables since the last time you saved the report.
The following database changes affect reports saved in R&R:

 Deleting a column;
 Changing the name or data type of a column;
 Changing the width of a column;
 Changing the name of a table.

The following sections explain how R&R responds to the changes
described above. In many cases, R&R notifies you of the inconsistency
between the report and the database. You can then edit the retrieved
report in interactive R&R to accommodate the changes made to your
tables. (Note that you will not be notified of changes in column width.)

Deleted Columns
If you delete from a table any column that is used by a report, R&R
notifies you that the column is missing when it retrieves the report. It
erases the column from the report, as well as erasing any totals based
on it. If the deleted column is used in a calculated field expression, the
calculated field will appear in the Field Menu flagged with a question
mark in front of it. If any flagged fields are used in your report, you
will have to edit the fields’ expressions before R&R will print the
report.
If you delete a column used in a filter, you will be prompted to edit the
filter when you try to print the report.
If you delete a column that is used as a sort or group field, R&R also
deletes the sort or group fields below it in the Sort-Group Table. For
example, if you delete COMPANY from your table, both COMPANY
and PRODUCT will be deleted from the following list of sort fields:

 1 STATE
2 CITY
3 COMPANY
4 PRODUCT

 Distributing Reports

Developing Applications, SQL Edition 205

Your Sort-Group Table will then contain only the following sort fields:
 1 STATE

2 CITY

If you deleted columns used to group your report, you may need to edit
your total fields so that they reset at the appropriate level.

Deleted Join Column
In order to retrieve the report, R&R creates “dummy” join fields that
have the same names as the missing join fields, with the prefix ?_ (as
in ?_NAME). When R&R finishes retrieving the report, it displays the
message “Join must be edited.” Before printing or previewing a report,
use the Database ⇒ Joins dialog to correct or remove each join whose
description in the Joins list is flagged with a question mark (?). Any
dummy join fields will appear in the dialog prefixed with ?_.

Changed Column Name or Data Type
If you change the name or data type of a column, R&R behaves as if
the original column had been deleted and a new column added: the
original is removed from the composite record structure, along with
any fields that total it, and the new one is added to the composite
record structure. Use Insert ⇒ Field to insert the new column. Any
calculated field that uses the changed column will appear in the Field
Menu flagged with a question mark. If any flagged fields are used in
your report, you must edit the fields’ expressions before R&R will
print the report. If you change the name or data type of a column used
in a filter or a join, or as a sort or group field, R&R will behave as if
the column had been deleted, as described above.

Changed Column Width
If you change the width of a column used in the report, R&R does not
automatically adjust the width of the field on the report layout or in
any calculated fields that use the field. You must use Format ⇒ Field
to make any desired adjustment. If you use the field more than once in
a report, each occurrence must be adjusted individually.

Chapter 8

206 Developing Applications, SQL Edition

Changed File Name
If a table or file name has been changed, R&R uses the search rules
previously described. If it can’t find the file under its old name, R&R
then displays the path and name of the file it can’t find. Follow the
prompts to select or enter the path and file name of the renamed file.
Note: Save the report after correcting for database or file location
changes; otherwise, you will have to repeat the corrections the next
time you retrieve the report.

Developing Applications, SQL Edition 207

Appendix A
Viewer Equivalencies
Introduction
R&R provides three ways of accessing the Viewer: the Viewer executable, the
Viewer DLL, and the R&R Custom Control. Figure A.1 shows the
equivalencies among the Custom Control properties, DLL routines, and
Viewer executable control parameters, as well as the default value for each.

Table of Equivalencies
Custom Control
Property

DLL Equivalent

Viewer EXE
Equivalent

Default Value

(About)
Action execRuntime (Not applicable) (Not applicable)
CopiesToPrinter setCopies RI_COPIES Saved number
Database setDatabase RI_DB Saved database
DataDirectory setDataDir /D Value in RSW.INI
DataSource setDataSource RI_DSOURCE Saved data source
Destination setOutputDest RI_PRINTER Saved destination
DisplayError setDisplayErrors RI_DISPERR False
DisplayStatus setDisplayStatus RI_STATUS False
EndPage setEndPage RI_ENDPAGE Saved ending page
ExportDestination setExportDest RI_EXPDST Display
Filter setFilter RI_FILTER (Not applicable)
GroupFields setGroupField RI_GROUP1, ... Saved group fields
ImageDirectory setImageDir /I Value in RSW.INI
Include setFilterUsage RI_INCLUDE Use saved query
LastErrorCode returned from

execViewer
RO_ECODE (Not applicable)

LastErrorPage returned from
execViewer

RO_PAGES (Not applicable)

LastErrorString returned from
execViewer

RO_EMSG (Not applicable)

MasterTable setMasterTableName RI_MASTER Saved value

Figure A.1 Viewer Equivalencies

Appendix A

208 Developing Applications, SQL Edition

Custom Control
Property

DLL Equivalent

Viewer EXE
Equivalent

Default Value

MemoFileName setMemoName RI_MEMO Saved value
NoEscape setPreventEscape RI_NOESC False
Parameters setUserParam User-defined

parameters
Blank

Password setPassword /P (Not applicable)
Port setPrinterPort RI_WPORT Saved printer port
Printer setPrinter RI_WPTR Saved printer driver
PrintFileName setOutputFile RI_OUTFILE Saved value
RelatedTables setJoinInfo RI_ALIAS1, ... Saved related tables
Replace setReplace RI_REPLACE (Not applicable)
ReportDirectory setLibraryDir /R Value in RSW.INI
ReportLibrary setLibrary RI_LIBRARY Required
ReportName chooseReport RI_REPORT Required
ReportPick setReportPick RI_REPPICK (Not applicable)
SortFields setSortField RI_SORT1, ... Saved sort fields
StartPage setBeginPage RI_BEGPAGE Saved starting page
(Not applicable) setStatusEveryPage RI_CHKTIME R
StatusFileName setStatusFileName /O RSWRUN.OUT
SuppressTitle setSuppressTitle /H False
TestPattern setTestPattern RI_TEST False
UserName setUserName /U (Not applicable)
Where setWhere RI_WHERE (Not applicable)
WindowBorderStyle setWinBorderStyle RI_WBORDER Sizable
WindowControlBox setWinControlBox RI_WCTRL True
WindowHeight setWinHeight RI_WHEIGHT Maximized
WindowLeft setWinLeft RI_WLEFT Maximized
WindowMaxButton setWinMaxButton RI_WMAX True
WindowMinButton setWinMinButton RI_WMIN True
WindowTitle setWinTitle RI_WTITLE Report name
WindowTop setWinTop RI_WTOP Maximized
WindowWidth setWinWidth RI_WWIDTH Maximized

Figure A.1 Viewer Equivalencies (continued)

Developing Applications, ARPEGGIO Developer Edition 209

Index
A

About, 129
Action, 129
Action routines, 46
Asynchronous printing, 120
Auto-SQL reports

inserting WHERE clauses, 29,
171

B
Btrieve

default data directory, 9
C

C programs
calling Viewer from, 36

Case sensitivity, 16
control table parameters, 14

CDLL() function, 195
chooseDataSource, 51
choosePrinter, 52
chooseReport, 53
chooseTable, 55
Command files, 6
Command switches, 6

/AL, 11
/B, 10
/CD, 8
/CP, 8
/CS, 8
/CU, 8
/D, 9
/H, 10
/I, 10
/O, 10, 107
/P, 9
/R, 9
/T, 5, 7
/U, 9

Control parameters
case of, 16

Control tables

case sensitivity, 14
errors in, 35
parameter widths, 14
parameters for, 13
predefined parameters, 15
question mark field values, 110
required parameters for, 13
row ID numbers, 5, 20
specifying password, 8
specifying user name, 8
structure of, 12
user-defined parameters, 40

Control tables and files
parameters for, 13
predefined parameters, 15
required parameters for, 13
specifying with /T switch, 7

Copies, 17
CopiesToPrinter, 130

D
Database, 131
Database property page, 128
DataDir, 11
DataDirectory, 131
DataSource, 132
dBASE

default data directory, 9
DBF export, 133
Default data directory

specifying with /D switch, 9
Default image directory

specifying with /I switch, 10
Default library directory

specifying with /R switch, 9
Defaults property page, 128
DEFINE REPORTVIEW

overriding, 25, 157
Defining parameters, 40
Destination, 133
DisplayError, 135
Displaying errors, 18

Index

210 Developing Applications, ARPEGGIO Developer Edition

Displaying reports, 24, 98, 134
DisplayStatus, 136
DLLs

calling functions from, 195
Dynamic-link libraries

calling functions from, 195
E

EndPage, 136
endReport, 56
Error messages, 35

displaying on screen, 18
Error-Handling routines, 51
Excel Chart, 134
Excel PivotTable, 134
EXEC

overriding, 25, 157
execRuntime, 57
ExportDestination, 137
Exporting reports to text files, 23,

24, 98
F

Field width
in control table, 14

Filter, 138
Filter property page, 127
Filters, 18, 138

and Viewer, 18, 20, 138, 143
overriding, 20, 143

Forms
printing on, 29

Functions
calling from DLLs, 195

G
General property page, 124
getBeginPage, 58
getCopies, 59
getDataSource, 60
getDisplayErrors, 60
getDisplayStatus, 61
getEndPage, 61
getErrorInfo, 62
getExportDest, 64
getFilter, 64

getFilterUsage, 65
getFirstFieldName, 65
getFirstFilteredFieldName, 66
getFirstGroupField, 67
getFirstJoinInfo, 68
getFirstReplace, 69
getFirstSortField, 70
getFirstUserParam, 70
getLibrary, 71
getMasterTableName, 72
getMemoName, 72
getNewReportHandle, 73
getNextFieldName, 73
getNextFilteredFieldName, 74
getNextGroupField, 75
getNextJoinInfo, 75
getNextReplace, 76
getNextSortField, 77
getNextUserParam, 78
getOutputDest, 78
getOutputFile, 79
Get-parameter routines, 46
getPreventEscape, 79
getPrinter, 80
getPrinterPort, 81
getReportPick, 81
getRuntimeRecord, 82
getStatusEveryPage, 83
getTestPattern, 84
getWinTitle, 84
Group property page, 127
GroupFields, 140
GroupFieldsString, 141
Grouping

overriding with Viewer, 19
I

Image files
directory location of, 10

ImageDirectory, 142
ImgDir, 11
ImgExt, 11
Include, 142
IndExt, 11
Interrupting reports, 23, 149

 Index

Developing Applications, ARPEGGIO Developer Edition 211

J
Joins property page, 128

L
LastErrorCode, 144
LastErrorPage, 145
LastErrorString, 145
LibDir, 11
LoadProperties, 146

M
MasterTable, 147
MemExt, 11
MemoFileName, 148

N
NoEscape, 149
Number of copies, 17

O
Object Linking and Embedding

Control;Custom control, 119
OCX, 119

P
Page numbers

ending, 16, 137, 167
starting, 16, 137, 167

Parameter passing, 109, 110, 111
defining parameters, 40
incorporating values in reports,

41
question mark parameter value,

40, 110
RIPARAM, 41
using control table or file, 39
using parameter table, 42

Parameter tables, 42
Parameters, 150
Parameters property page, 129
ParametersString, 150
Password, 151
PointSize, 190
Port, 152
PowerBuilder

calling Viewer from, 38

Preview Window property page,
126

Previewing reports, 24, 98, 134
PrevWinClr, 11
Print To property page, 124
Printer, 153

overriding, 30, 101, 153
selecting, 30, 101, 153

Printer port
overriding, 30, 102, 152
selecting, 30, 102, 152

Printer property page, 125
PrintFileName, 154
Printing

on forms, 29
selected pages, 16, 137, 167
test patterns, 29
to file, 23, 99

Prompting users for input, 40, 110
Q

Question mark (?) parameter
value, 40

Question mark parameter value,
14, 20, 23, 24, 27, 30, 110

R
Related tables

overriding, 16
RelatedTables, 155
RelatedTablesString, 155
Replace, 156
Report libraries

directory location of, 9
specifying for Viewer, 21

Report Shortcut Maker utility, 3
Report title, 31, 176
ReportDirectory, 159
ReportLibrary, 160
ReportName, 161
ReportPick, 162
Reports

specifying for Viewer, 161
ResetControl, 163
resetErrorInfo, 85
ResetProperties, 164

Index

212 Developing Applications, ARPEGGIO Developer Edition

RI_ALIAS#, 16
RI_BEGPAGE, 16
RI_CHKTIME, 17
RI_COPIES, 17
RI_DB, 17
RI_DISPERR, 18, 33
RI_DSOURCE, 18
RI_ENDPAGE, 16
RI_EXPDST, 18
RI_FILTER, 18, 19
RI_GROUP, 19
RI_ID, 5, 20, 36
RI_INCLUDE, 20, 143
RI_LIBRARY, 21
RI_MASTER, 22
RI_MEMO, 22
RI_NOESC, 23
RI_OUTFILE, 23
RI_PRINTER, 24
RI_REPLACE, 25
RI_REPORT, 27
RI_REPPICK, 27
RI_SORT, 28
RI_STATUS, 28
RI_TEST, 28
RI_WBORDER, 32
RI_WCTRL, 32
RI_WHEIGHT, 33
RI_WHERE, 29
RI_WLEFT, 33
RI_WMAX, 33
RI_WMIN, 33
RI_WPORT, 30
RI_WPTR, 30
RI_WTITLE, 24, 31, 98, 111
RI_WTOP, 33
RI_WWIDTH, 33
RIPARAM, 41
RO_ECODE, 35
RO_EMSG, 35
RO_PAGES, 35
RO_REPORTS, 35
RO_RIRECNO, 36
RSDECL.BAS, 51
RSREPORT.H, 51

RSW.INI, 11, 121
RSW32.OCX, 119
RSWRUN.EXE, 2, 4
RSWRUN.OUT, 10, 17, 34, 107
RTF, 134
RTF export, 133
RunReport, 164

S
Sample applications

for OCX, 120
for the DLL, 45

Saving reports as files, 23, 99
SELECT

overriding, 25, 157
Selecting

ending page number, 16, 137,
167

number of copies, 17
report library, 21
starting page number, 16, 137,

167
setBeginPage, 85
setCopies, 86
setDatabase, 86
setDataDir, 87
setDataSource, 87
setDisplayErrors, 88
setDisplayStatus, 88
setEndPage, 89
setExportDest, 90
setFilter, 90
setFilterUsage, 91
setGroupField, 92
setImageDir, 93
setJoinInfo, 94
setLibrary, 94
setLibraryDir, 95
setMasterTableName, 96
setMemoName, 96
setOutputDest, 97
setOutputFile, 99
Set-Parameter routines, 48
setPassword, 100
setPreventEscape, 100
setPrinter, 101

 Index

Developing Applications, ARPEGGIO Developer Edition 213

setPrinterPort, 102
setReplace, 103
setReportPick, 104
setSortField, 105
setStatusEveryPage, 106
setStatusFileName, 106
setSuppressTitle, 107
setTestPattern, 107
setUserName, 108
setUserParam, 109
setWhere, 111
setWinBorderStyle, 112
setWinControlBox, 113
setWinHeight, 113
setWinLeft, 114
setWinMaxButton, 114
setWinMinButton, 115
setWinTitle, 115
setWinTop, 116
setWinWidth, 117
ShowSplash, 11
Sort property page, 127
SortFields, 165
SortFieldsString, 166
Sorting

overriding with Viewer, 28
Specifying Viewer reports, 161
StartPage, 167
Status table

naming, 107
specifying alternate name for,

107
StatusFileName, 167
SuppressTitle, 168
Synchronous printing, 120

T
Test patterns

printing, 29
TestPattern, 169
Text control files, 5

errors in, 35
predefined parameters, 15
required parameters for, 13
structure of, 12
user-defined parameters, 40

Text Data, 134
Text Data export, 134
Text export, 133
Text files

exporting reports to, 23, 24, 98
Text memo files, 22, 148

directory location of, 9
overriding, 22, 148

U
UpdateControl, 169
User-Interface routines, 50
UserName, 170
User-SQL property page, 127
User-SQL reports

overriding SELECT, 25, 157
V

Viewer
and filters, 20, 143
command files, 6
command line for, 4
command switches, 6
control parameters, 13
control tables, 14, 25
executing multiple reports, 6
executing selected reports, 5, 20
executing with a control table, 4
executing with a text file, 5
required parameters for, 13
specifying defaults with

RSW.INI, 11, 121
system requirements for, 2

Viewer output file, 17
Viewer overrides

filters, 138
for filters, 18
for related tables, 16
Grouping, 19
master table, 22
output destination, 24
output file, 23
printer, 30, 101, 153
printer port, 30, 102, 152
report output file, 99
saved filter, 20, 143

Index

214 Developing Applications, ARPEGGIO Developer Edition

SELECT, 25, 157
Sorting, 28
text memo files, 22, 148
WHERE clause, 29, 171

Viewer status file, 17, 34
entries, 34
error codes, 35
error messages, 35
format of, 34
naming, 10
number of pages, 35
number of reports, 35
row ID numbers, 36
specifying with /O switch, 10
updating, 17

Viewer status window
cancel button, 23, 149
displaying, 28, 136

Visual Basic
calling Viewer from, 37

W
Where, 170
WHERE clauses

inserting, 29, 171
WindowBorderStyle, 172
WindowControlBox, 173
WindowHeight, 173
WindowLeft, 174
WindowMaxButton, 174
WindowMinButton, 175
WindowTitle, 176
WindowTop, 176
WindowWidth, 177
WinExec, 37
Word Merge, 134
Word Merge export, 134
Worksheet export, 133
writeRuntimeRecord, 117

